These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25729706)

  • 1. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block.
    Moon JS; Won KC
    Diabetes Metab J; 2015 Feb; 39(1):1-9. PubMed ID: 25729706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications.
    Dunning BE; Gerich JE
    Endocr Rev; 2007 May; 28(3):253-83. PubMed ID: 17409288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of glucagon secretion.
    Young A
    Adv Pharmacol; 2005; 52():151-71. PubMed ID: 16492545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of dysregulated glucagon secretion in type 2 diabetes.
    D'Alessio D
    Diabetes Obes Metab; 2011 Oct; 13 Suppl 1():126-32. PubMed ID: 21824266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia.
    Asadi F; Dhanvantari S
    Front Endocrinol (Lausanne); 2021; 12():726368. PubMed ID: 34659118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia.
    Gu W; Yan H; Winters KA; Komorowski R; Vonderfecht S; Atangan L; Sivits G; Hill D; Yang J; Bi V; Shen Y; Hu S; Boone T; Lindberg RA; Véniant MM
    J Pharmacol Exp Ther; 2009 Dec; 331(3):871-81. PubMed ID: 19720878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Islet cell function: alpha and beta cells--partners towards normoglycaemia.
    Göke B
    Int J Clin Pract Suppl; 2008 Mar; (159):2-7. PubMed ID: 18269435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incretin hormones and maturity onset diabetes of the young--pathophysiological implications and anti-diabetic treatment potential.
    Østoft SH
    Dan Med J; 2015 Sep; 62(9):. PubMed ID: 26324089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin modulation of glucagon secretion: the role of insulin and other factors in the regulation of glucagon secretion.
    Kawamori D; Kulkarni RN
    Islets; 2009; 1(3):276-9. PubMed ID: 21099284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teneligliptin improves glycemic control with the reduction of postprandial insulin requirement in Japanese diabetic patients.
    Tsuchimochi W; Ueno H; Yamashita E; Tsubouchi C; Sakoda H; Nakamura S; Nakazato M
    Endocr J; 2015; 62(1):13-20. PubMed ID: 25252844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular pathways underlying the pathogenesis of pancreatic alpha-cell dysfunction.
    Kawamori D; Welters HJ; Kulkarni RN
    Adv Exp Med Biol; 2010; 654():421-45. PubMed ID: 20217508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vildagliptin reduces glucagon during hyperglycemia and sustains glucagon counterregulation during hypoglycemia in type 1 diabetes.
    Farngren J; Persson M; Schweizer A; Foley JE; Ahrén B
    J Clin Endocrinol Metab; 2012 Oct; 97(10):3799-806. PubMed ID: 22855332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance.
    Jørgensen NB; Jacobsen SH; Dirksen C; Bojsen-Møller KN; Naver L; Hvolris L; Clausen TR; Wulff BS; Worm D; Lindqvist Hansen D; Madsbad S; Holst JJ
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E122-31. PubMed ID: 22535748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy deficiency in β cells blunts incretin-induced suppression of glucagon release from α cells.
    Kim MJ; Choi OK; Chae KS; Lee H; Chung SS; Ham DS; Kim JW; Yoon KH; Park KS; Jung HS
    Islets; 2015; 7(5):e1129096. PubMed ID: 26744903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic role in an early glucose-lowering effect by a novel dipeptidyl peptidase 4 inhibitor, evogliptin, in a rodent model of type 2 diabetes.
    Kim TH; Kim MK; Cheong YH; Chae YN; Lee Y; Ka SO; Jung IH; Shin CY; Bae EJ; Son MH
    Eur J Pharmacol; 2016 Jan; 771():65-76. PubMed ID: 26621343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents.
    Trujillo JM; Nuffer W
    Pharmacotherapy; 2014 Nov; 34(11):1174-86. PubMed ID: 25382096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin receptor subtype-2-deficient mice with diet-induced obesity have hyperglycemia, nonfasting hyperglucagonemia, and decreased hepatic glycogen deposition.
    Singh V; Grötzinger C; Nowak KW; Zacharias S; Göncz E; Pless G; Sauer IM; Eichhorn I; Pfeiffer-Guglielmi B; Hamprecht B; Wiedenmann B; Plöckinger U; Strowski MZ
    Endocrinology; 2007 Aug; 148(8):3887-99. PubMed ID: 17525126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass.
    Bojsen-Møller KN
    Dan Med J; 2015 Apr; 62(4):B5057. PubMed ID: 25872541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of experimental insulin deficiency on glucagon secretion.
    Müller WA; Faloona GR; Unger RH
    J Clin Invest; 1971 Sep; 50(9):1992-9. PubMed ID: 4935445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes.
    Deacon CF; Holst JJ
    Int J Biochem Cell Biol; 2006; 38(5-6):831-44. PubMed ID: 16242377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.