These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25729749)

  • 1. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes.
    Rockwell NC; Lagarias JC; Bhattacharya D
    Front Ecol Evol; 2014; 2(66):. PubMed ID: 25729749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids.
    Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D
    Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes.
    Qiu H; Yoon HS; Bhattacharya D
    Front Plant Sci; 2013 Sep; 4():366. PubMed ID: 24065973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic eukaryotes unite: endosymbiosis connects the dots.
    Bhattacharya D; Yoon HS; Hackett JD
    Bioessays; 2004 Jan; 26(1):50-60. PubMed ID: 14696040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular timeline for the origin of photosynthetic eukaryotes.
    Yoon HS; Hackett JD; Ciniglia C; Pinto G; Bhattacharya D
    Mol Biol Evol; 2004 May; 21(5):809-18. PubMed ID: 14963099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B; Hoef-Emden K; Melkonian M
    BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The single, ancient origin of chromist plastids.
    Yoon HS; Hackett JD; Pinto G; Bhattacharya D
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15507-12. PubMed ID: 12438651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin and establishment of the plastid in algae and plants.
    Reyes-Prieto A; Weber AP; Bhattacharya D
    Annu Rev Genet; 2007; 41():147-68. PubMed ID: 17600460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae.
    Schön ME; Zlatogursky VV; Singh RP; Poirier C; Wilken S; Mathur V; Strassert JFH; Pinhassi J; Worden AZ; Keeling PJ; Ettema TJG; Wideman JG; Burki F
    Nat Commun; 2021 Nov; 12(1):6651. PubMed ID: 34789758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.
    Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J
    Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic connectivity as a driver of host and endosymbiont integration.
    Karkar S; Facchinelli F; Price DC; Weber AP; Bhattacharya D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10208-15. PubMed ID: 25825767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastids and protein targeting.
    McFadden GI
    J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.