These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25730110)

  • 1. Successively recycle waste as catalyst: a one-pot Wittig/1,4-reduction/Paal-Knorr sequence for modular synthesis of substituted furans.
    Chen L; Du Y; Zeng XP; Shi TD; Zhou F; Zhou J
    Org Lett; 2015 Mar; 17(6):1557-60. PubMed ID: 25730110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot sila-Stetter/Paal-Knorr strategy.
    Bharadwaj AR; Scheidt KA
    Org Lett; 2004 Jul; 6(14):2465-8. PubMed ID: 15228305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans.
    Minetto G; Raveglia LF; Taddei M
    Org Lett; 2004 Feb; 6(3):389-92. PubMed ID: 14748600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new facile approach to the synthesis of 3-methylthio-substituted furans, pyrroles, thiophenes, and related derivatives.
    Yin G; Wang Z; Chen A; Gao M; Wu A; Pan Y
    J Org Chem; 2008 May; 73(9):3377-83. PubMed ID: 18351746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium(iii)-catalyzed synthesis of trisubstituted furans via vinylic C-H bond activation.
    Sherikar MS; Bettadapur KR; Lanke V; Prabhu KR
    Org Biomol Chem; 2021 Sep; 19(34):7470-7474. PubMed ID: 34612365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-pot metal-free protocol for the synthesis of chalcogenated furans from 1,4-enediones and thiols.
    Rajeshkumar V; Neelamegam C; Anandan S
    Org Biomol Chem; 2019 Jan; 17(4):982-991. PubMed ID: 30632591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-pot ring-closure and ring-opening sequence for the cascade synthesis of dihydrofurofurans and functionalized furans.
    Yadav MB; Jeong YT
    Org Biomol Chem; 2021 Sep; 19(34):7409-7419. PubMed ID: 34397077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycle waste salt as reagent: a one-pot substitution/Krapcho reaction sequence to α-fluorinated esters and sulfones.
    Zhu F; Xu PW; Zhou F; Wang CH; Zhou J
    Org Lett; 2015 Feb; 17(4):972-5. PubMed ID: 25654189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular synthesis of chiral 1,2-dihydropyridines via Mannich/Wittig/cycloisomerization sequence that internally reuses waste.
    Mu BS; Cui XY; Zeng XP; Yu JS; Zhou J
    Nat Commun; 2021 Apr; 12(1):2219. PubMed ID: 33833227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rearrangement of tert-butylperoxides for the construction of polysubstituted furans.
    Zheng X; Lu S; Li Z
    Org Lett; 2013 Nov; 15(21):5432-5. PubMed ID: 24117331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of substituted furans using Cu(OTf)(2)-catalyzed propargylation/cycloisomerization tandem reaction.
    Pan YM; Zhao SY; Ji WH; Zhan ZP
    J Comb Chem; 2009; 11(1):103-9. PubMed ID: 19046075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rasta resin-PPh3-NBniPr2 and its use in one-pot Wittig reaction cascades.
    Teng Y; Lu J; Toy PH
    Chem Asian J; 2012 Feb; 7(2):351-9. PubMed ID: 22162318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polystyrenesulfonate-catalyzed synthesis of novel pyrroles through Paal-Knorr reaction.
    Banik M; Ramirez B; Reddy A; Bandyopadhyay D; Banik BK
    Org Med Chem Lett; 2012 Mar; 2(1):11. PubMed ID: 22452839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal-Knorr followed by an indium-mediated reaction.
    Kim BH; Bae S; Go A; Lee H; Gong C; Lee BM
    Org Biomol Chem; 2016 Jan; 14(1):265-76. PubMed ID: 26593044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste as catalyst: tandem Wittig/conjugate reduction sequence to α-CF3 γ-keto esters that uses Ph3PO as catalyst for the chemoselective conjugate reduction.
    Chen L; Shi TD; Zhou J
    Chem Asian J; 2013 Mar; 8(3):556-9. PubMed ID: 23307706
    [No Abstract]   [Full Text] [Related]  

  • 16. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct catalytic synthesis of β-(C3)-substituted pyrroles: a complementary addition to the Paal-Knorr reaction.
    Pawar AP; Yadav J; Mir NA; Iype E; Rangan K; Anthal S; Kant R; Kumar I
    Chem Commun (Camb); 2021 Jan; 57(2):251-254. PubMed ID: 33306070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An expeditious and highly efficient synthesis of substituted pyrroles using a low melting deep eutectic mixture.
    Alvi S; Ali R
    Org Biomol Chem; 2021 Nov; 19(44):9732-9745. PubMed ID: 34730166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular microreactor with integrated reflection element for online reaction monitoring using infrared spectroscopy.
    Lozeman JJA; Elsbecker T; Bohnenn S; de Boer HL; Krakers M; Mul G; van den Berg A; Odijk M
    Lab Chip; 2020 Nov; 20(22):4166-4174. PubMed ID: 33030158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 2,3-di- and 2,3,4-trisubstituted furans from 1,2-dioxines generated by an enyne-RCM/Diels-Alder reaction sequence.
    Yang YK; Choi JH; Tae J
    J Org Chem; 2005 Aug; 70(17):6995-8. PubMed ID: 16095335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.