BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25730797)

  • 41. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles.
    Samadi N; Abbadessa A; Di Stefano A; van Nostrum CF; Vermonden T; Rahimian S; Teunissen EA; van Steenbergen MJ; Amidi M; Hennink WE
    J Control Release; 2013 Dec; 172(2):436-43. PubMed ID: 23751568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual growth factor delivery using biocompatible core-shell microcapsules for angiogenesis.
    Choi DH; Subbiah R; Kim IH; Han DK; Park K
    Small; 2013 Oct; 9(20):3468-76. PubMed ID: 23585380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Properties of poly(lactic-co-glycolic acid) nanospheres containing protease inhibitors: camostat mesilate and nafamostat mesilate.
    Yin J; Noda Y; Yotsuyanagi T
    Int J Pharm; 2006 May; 314(1):46-55. PubMed ID: 16551494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles.
    Klose D; Delplace C; Siepmann J
    Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and optimization of NSAID loaded nanoparticles.
    Sashmal S; Mukherjee S; Ray S; Thakur RS; Ghosh LK; Gupta BK
    Pak J Pharm Sci; 2007 Apr; 20(2):157-62. PubMed ID: 17416573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process.
    Kempe S; Metz H; Mäder K
    J Control Release; 2008 Sep; 130(3):220-5. PubMed ID: 18611421
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bupivacaine-loaded biodegradable poly(lactic-co-glycolic) acid microspheres I. Optimization of the drug incorporation into the polymer matrix and modelling of drug release.
    Zhang H; Lu Y; Zhang G; Gao S; Sun D; Zhong Y
    Int J Pharm; 2008 Mar; 351(1-2):244-9. PubMed ID: 18024022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system.
    Fraylich MR; Liu R; Richardson SM; Baird P; Hoyland J; Freemont AJ; Alexander C; Shakesheff K; Cellesi F; Saunders BR
    J Colloid Interface Sci; 2010 Apr; 344(1):61-9. PubMed ID: 20070971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug.
    Lizambard M; Menu T; Fossart M; Bassand C; Agossa K; Huck O; Neut C; Siepmann F
    Int J Pharm; 2019 Dec; 572():118833. PubMed ID: 31715363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery.
    Phaechamud T; Setthajindalert O
    Eur J Pharm Sci; 2017 Mar; 99():258-265. PubMed ID: 28027940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of implant formation on drug release kinetics of in situ forming implants.
    Suh MS; Kastellorizios M; Tipnis N; Zou Y; Wang Y; Choi S; Burgess DJ
    Int J Pharm; 2021 Jan; 592():120105. PubMed ID: 33232755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants.
    Li Z; Mu H; Weng Larsen S; Jensen H; Østergaard J
    Int J Pharm; 2021 Nov; 609():121183. PubMed ID: 34653562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems.
    Liu H; Venkatraman SS
    J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems.
    Liu H; Venkatraman SS
    J Pharm Sci; 2012 May; 101(5):1783-93. PubMed ID: 22318766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.
    Srichan T; Phaechamud T
    AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Are in situ formulations the keys for the therapeutic future of S-nitrosothiols?
    Parent M; Boudier A; Dupuis F; Nouvel C; Sapin A; Lartaud I; Six JL; Leroy P; Maincent P
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):640-9. PubMed ID: 23954508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study.
    Liu Y; Kemmer A; Keim K; Curdy C; Petersen H; Kissel T
    Eur J Pharm Biopharm; 2010 Oct; 76(2):222-9. PubMed ID: 20650316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of co-solvents on the controlled release of calcitonin polypeptide from in situ biodegradable polymer implants.
    Prabhu S; Tran LP; Betageri GV
    Drug Deliv; 2005; 12(6):393-8. PubMed ID: 16253955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Polymer Permeability and Solvent Removal Rate on
    Zhang X; Yang L; Zhang C; Liu D; Meng S; Zhang W; Meng S
    Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31658642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.