These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25730820)

  • 41. Residuals of autoregressive model providing additional information for feature extraction of pattern recognition-based myoelectric control.
    Pan L; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7270-3. PubMed ID: 26737970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Longitudinal high-density EMG classification: Case study in a glenohumeral TMR subject.
    Schweisfurth MA; Ernst J; Vujaklija I; Schilling AF; Farina D; Aszmann OC; Felmerer G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1-6. PubMed ID: 28813784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4192-5. PubMed ID: 25570916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: A pilot study.
    Tahtis V; Kaski D; Seemungal BM
    Restor Neurol Neurosci; 2014; 32(4):527-32. PubMed ID: 24906374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods.
    Liu J
    Med Eng Phys; 2014 Dec; 36(12):1716-20. PubMed ID: 25292451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
    Laczó B; Antal A; Rothkegel H; Paulus W
    Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees.
    Al-Timemy AH; Bugmann G; Escudero J
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30042296
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dimensionality analysis of forearm muscle activation for myoelectric control in transradial amputees.
    McClanahan A; Moench M; Fu Q
    PLoS One; 2020; 15(12):e0242921. PubMed ID: 33270686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.