BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25730847)

  • 1. Joint control of terrestrial gross primary productivity by plant phenology and physiology.
    Xia J; Niu S; Ciais P; Janssens IA; Chen J; Ammann C; Arain A; Blanken PD; Cescatti A; Bonal D; Buchmann N; Curtis PS; Chen S; Dong J; Flanagan LB; Frankenberg C; Georgiadis T; Gough CM; Hui D; Kiely G; Li J; Lund M; Magliulo V; Marcolla B; Merbold L; Montagnani L; Moors EJ; Olesen JE; Piao S; Raschi A; Roupsard O; Suyker AE; Urbaniak M; Vaccari FP; Varlagin A; Vesala T; Wilkinson M; Weng E; Wohlfahrt G; Yan L; Luo Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2788-93. PubMed ID: 25730847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data.
    Xu X; Du H; Fan W; Hu J; Mao F; Dong H
    J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic capacity dominates the interannual variation of annual gross primary productivity in the Northern Hemisphere.
    Zhang W; Yu G; Chen Z; Zhu X; Han L; Liu Z; Lin Y; Han S; Sha L; Wang H; Wang Y; Yan J; Zhang Y; Gharun M
    Sci Total Environ; 2022 Nov; 849():157856. PubMed ID: 35934043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominant role of plant physiology in trend and variability of gross primary productivity in North America.
    Zhou S; Zhang Y; Ciais P; Xiao X; Luo Y; Caylor KK; Huang Y; Wang G
    Sci Rep; 2017 Feb; 7():41366. PubMed ID: 28145496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data].
    Zhao JJ; Liu LY
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):311-8. PubMed ID: 23705372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems.
    Xu X; Zhou G; Du H; Mao F; Xu L; Li X; Liu L
    Sci Total Environ; 2020 Jul; 726():137948. PubMed ID: 32481215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating global annual gross primary production based on satellite-derived phenology and maximal carbon uptake capacity.
    Xu X; Chen D
    Environ Res; 2024 Jul; 252(Pt 4):119063. PubMed ID: 38740292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of vegetation carbon uptake to snow-induced phenological and physiological changes across temperate China.
    Chen S; Huang Y; Wang G
    Sci Total Environ; 2019 Nov; 692():188-200. PubMed ID: 31349162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model.
    Chiwara P; Ogutu BO; Dash J; Milton EJ; Ardö J; Saunders M; Nicolini G
    Sci Total Environ; 2018 Jul; 630():1472-1483. PubMed ID: 29727926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence.
    Chen S; Huang Y; Gao S; Wang G
    Sci Total Environ; 2019 May; 663():45-59. PubMed ID: 30708216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations.
    Li X; Xiao J; He B; Altaf Arain M; Beringer J; Desai AR; Emmel C; Hollinger DY; Krasnova A; Mammarella I; Noe SM; Ortiz PS; Rey-Sanchez AC; Rocha AV; Varlagin A
    Glob Chang Biol; 2018 Sep; 24(9):3990-4008. PubMed ID: 29733483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.
    Barman R; Jain AK; Liang M
    Glob Chang Biol; 2014 May; 20(5):1394-411. PubMed ID: 24273031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annual and seasonal variations in gross primary productivity across the agro-climatic regions in India.
    Varghese R; Behera MD
    Environ Monit Assess; 2019 Sep; 191(10):631. PubMed ID: 31520222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production.
    Peichl M; Gažovič M; Vermeij I; de Goede E; Sonnentag O; Limpens J; Nilsson MB
    Sci Rep; 2018 May; 8(1):8012. PubMed ID: 29789673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.
    Parazoo NC; Bowman K; Fisher JB; Frankenberg C; Jones DB; Cescatti A; Pérez-Priego O; Wohlfahrt G; Montagnani L
    Glob Chang Biol; 2014 Oct; 20(10):3103-21. PubMed ID: 24909755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests.
    Fang J; Lutz JA; Wang L; Shugart HH; Yan X
    Glob Chang Biol; 2020 Dec; 26(12):6974-6988. PubMed ID: 32926493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.
    Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR
    Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem.
    Luo Y; El-Madany T; Ma X; Nair R; Jung M; Weber U; Filippa G; Bucher SF; Moreno G; Cremonese E; Carrara A; Gonzalez-Cascon R; Cáceres Escudero Y; Galvagno M; Pacheco-Labrador J; Martín MP; Perez-Priego O; Reichstein M; Richardson AD; Menzel A; Römermann C; Migliavacca M
    Glob Chang Biol; 2020 Aug; 26(8):4379-4400. PubMed ID: 32348631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a water-stressed landscape.
    DuBois S; Desai AR; Singh A; Serbin SP; Goulden ML; Baldocchi DD; Ma S; Oechel WC; Wharton S; Kruger EL; Townsend PA
    Ecol Appl; 2018 Jul; 28(5):1313-1324. PubMed ID: 29694698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis.
    Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T
    Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.