BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 25731021)

  • 1. [Estradiol inducible and flower-specific expression of ARGOS and ARGOS-LIKE genes in transgenic tobacco plants].
    Kuluev BR; Kniazev AV; Nikonorov IuM; Cheremis AV
    Genetika; 2014 Aug; 50(8):918-29. PubMed ID: 25731021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The creation of transgenic tobacco plants expressing fragments of the ARGOS and NtEXPA4 genes in antisense orientation].
    Kuluev BR; Kniazev AV; Postrigan' BN; Chemeris AV
    Genetika; 2014 Jan; 50(1):44-51. PubMed ID: 25711011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of constitutive expression of ARGOS-LIKE gene on dimensions of cells and organs of transgenic tobacco plants].
    Kuluev BR; Khiazev AV; Safiullina MG; Cemeris AV
    Genetika; 2013 May; 49(5):587-94. PubMed ID: 24159799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ARGOS-LIKE genes of Arabidopsis and tobacco as targets for improving plant productivity and stress tolerance.
    Kuluev B; Mikhaylova E; Ermoshin A; Veselova S; Tugbaeva A; Gumerova G; Gainullina K; Zaikina E
    J Plant Physiol; 2019 Nov; 242():153033. PubMed ID: 31472448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth].
    Kuluev BR; Kniazev AV; Nikonorov IuM; Chemeris AV
    Genetika; 2014 May; 50(5):560-9. PubMed ID: 25715472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ectopic expression of the PnANTL1 and PnANTL2 black poplar genes in transgenic tobacco plants].
    Kuluev BR; Kniazev AV; Il'iasova AA; Chemeris AV
    Genetika; 2012 Oct; 48(10):1162-70. PubMed ID: 23270264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of constitutive expression of Arabidopsis CLAVATA3 on cell growth and possible role of cytokinins in leaf size control in transgenic tobacco plants.
    Kuluev B; Avalbaev A; Nikonorov Y; Ermoshin A; Yuldashev R; Akhiarova G; Shakirova F; Chemeris A
    J Plant Physiol; 2018 Dec; 231():244-250. PubMed ID: 30317073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Aintegumenta as a gene to modify floral size in ornamental plants.
    Manchado-Rojo M; Weiss J; Egea-Cortines M
    Plant Biotechnol J; 2014 Oct; 12(8):1053-65. PubMed ID: 24985495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development.
    Li F; Han Y; Feng Y; Xing S; Zhao M; Chen Y; Wang W
    J Biotechnol; 2013 Feb; 163(3):281-91. PubMed ID: 23183383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrida.
    Verdonk JC; Shibuya K; Loucas HM; Colquhoun TA; Underwood BA; Clark DG
    Plant Biotechnol J; 2008 Sep; 6(7):694-701. PubMed ID: 18482222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size.
    Wang B; Sang Y; Song J; Gao XQ; Zhang X
    J Genet Genomics; 2009 Jan; 36(1):31-40. PubMed ID: 19161943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco.
    Baucher M; Moussawi J; Vandeputte OM; Monteyne D; Mol A; Pérez-Morga D; El Jaziri M
    Plant Biol (Stuttg); 2013 Sep; 15(5):892-8. PubMed ID: 23173976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shortening tobacco life cycle accelerates functional gene identification in genomic research.
    Ning G; Xiao X; Lv H; Li X; Zuo Y; Bao M
    Plant Biol (Stuttg); 2012 Nov; 14(6):934-43. PubMed ID: 23107371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.
    Wen Z; Yang Y; Zhang J; Wang X; Singer S; Liu Z; Yang Y; Yan G; Liu Z
    Plant Biotechnol J; 2014 Sep; 12(7):951-62. PubMed ID: 24893677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.
    Gargul JM; Mibus H; Serek M
    Plant Biotechnol J; 2015 Jan; 13(1):51-61. PubMed ID: 25082411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants.
    Hibi T; Kosugi S; Iwai T; Kawata M; Seo S; Mitsuhara I; Ohashi Y
    J Exp Bot; 2007; 58(13):3671-8. PubMed ID: 17965144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence.
    Wang Y; Kumar PP
    J Exp Bot; 2007; 58(3):533-44. PubMed ID: 17158107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.
    Arpat AB; Magliano P; Wege S; Rouached H; Stefanovic A; Poirier Y
    Plant J; 2012 Aug; 71(3):479-91. PubMed ID: 22449068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-Induced Gene Silencing for Functional Analysis of Flower Traits in Petunia.
    Broderick SR; Chapin LJ; Jones ML
    Methods Mol Biol; 2020; 2172():199-222. PubMed ID: 32557371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.
    Shi Y; Zhang X; Xu ZY; Li L; Zhang C; Schläppi M; Xu ZQ
    Plant Biol (Stuttg); 2011 Sep; 13(5):731-9. PubMed ID: 21815977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.