These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 25731103)
1. Performance comparison of LUR and OK in PM2.5 concentration mapping: a multidimensional perspective. Zou B; Luo Y; Wan N; Zheng Z; Sternberg T; Liao Y Sci Rep; 2015 Mar; 5():8698. PubMed ID: 25731103 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal modeling of PM Chen L; Gao S; Zhang H; Sun Y; Ma Z; Vedal S; Mao J; Bai Z Environ Int; 2018 Jul; 116():300-307. PubMed ID: 29730578 [TBL] [Abstract][Full Text] [Related]
3. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
4. A hybrid kriging/land-use regression model to assess PM Wu CD; Zeng YT; Lung SC Sci Total Environ; 2018 Dec; 645():1456-1464. PubMed ID: 30248867 [TBL] [Abstract][Full Text] [Related]
5. Using Kriging incorporated with wind direction to investigate ground-level PM Zhang H; Zhan Y; Li J; Chao CY; Liu Q; Wang C; Jia S; Ma L; Biswas P Sci Total Environ; 2021 Jan; 751():141813. PubMed ID: 32898747 [TBL] [Abstract][Full Text] [Related]
6. A site-optimised multi-scale GIS based land use regression model for simulating local scale patterns in air pollution. Ma X; Longley I; Gao J; Kachhara A; Salmond J Sci Total Environ; 2019 Oct; 685():134-149. PubMed ID: 31174113 [TBL] [Abstract][Full Text] [Related]
7. Exposure inequality assessment for PM Ouyang W; Gao B; Cheng H; Hao Z; Wu N Sci Total Environ; 2018 Sep; 635():769-778. PubMed ID: 29710600 [TBL] [Abstract][Full Text] [Related]
8. Using MAIAC AOD to verify the PM Li R; Ma T; Xu Q; Song X Environ Pollut; 2018 Dec; 243(Pt A):501-509. PubMed ID: 30216882 [TBL] [Abstract][Full Text] [Related]
9. [Application of the LUR Model in the Prediction of Spatial Distributions of Soil Heavy Metals]. Zeng JJ; Shen CZ; Zhou SL; Lu CF; Jin ZF; Zhu Y Huan Jing Ke Xue; 2018 Jan; 39(1):371-378. PubMed ID: 29965704 [TBL] [Abstract][Full Text] [Related]
10. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
12. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Lee M; Brauer M; Wong P; Tang R; Tsui TH; Choi C; Cheng W; Lai PC; Tian L; Thach TQ; Allen R; Barratt B Sci Total Environ; 2017 Aug; 592():306-315. PubMed ID: 28319717 [TBL] [Abstract][Full Text] [Related]
13. Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches. Wang M; Gehring U; Hoek G; Keuken M; Jonkers S; Beelen R; Eeftens M; Postma DS; Brunekreef B Environ Health Perspect; 2015 Aug; 123(8):847-51. PubMed ID: 25839747 [TBL] [Abstract][Full Text] [Related]
14. Land use regression models for estimating individual NOx and NO₂ exposures in a metropolis with a high density of traffic roads and population. Lee JH; Wu CF; Hoek G; de Hoogh K; Beelen R; Brunekreef B; Chan CC Sci Total Environ; 2014 Feb; 472():1163-71. PubMed ID: 24377679 [TBL] [Abstract][Full Text] [Related]
15. Development of West-European PM de Hoogh K; Gulliver J; Donkelaar AV; Martin RV; Marshall JD; Bechle MJ; Cesaroni G; Pradas MC; Dedele A; Eeftens M; Forsberg B; Galassi C; Heinrich J; Hoffmann B; Jacquemin B; Katsouyanni K; Korek M; Künzli N; Lindley SJ; Lepeule J; Meleux F; de Nazelle A; Nieuwenhuijsen M; Nystad W; Raaschou-Nielsen O; Peters A; Peuch VH; Rouil L; Udvardy O; Slama R; Stempfelet M; Stephanou EG; Tsai MY; Yli-Tuomi T; Weinmayr G; Brunekreef B; Vienneau D; Hoek G Environ Res; 2016 Nov; 151():1-10. PubMed ID: 27447442 [TBL] [Abstract][Full Text] [Related]
16. A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy. Chen L; Liang S; Li X; Mao J; Gao S; Zhang H; Sun Y; Vedal S; Bai Z; Ma Z; Haiyu ; Azzi M Sci Total Environ; 2021 Jan; 752():141780. PubMed ID: 32882471 [TBL] [Abstract][Full Text] [Related]
17. Combining Land-Use Regression and Chemical Transport Modeling in a Spatiotemporal Geostatistical Model for Ozone and PM2.5. Wang M; Sampson PD; Hu J; Kleeman M; Keller JP; Olives C; Szpiro AA; Vedal S; Kaufman JD Environ Sci Technol; 2016 May; 50(10):5111-8. PubMed ID: 27074524 [TBL] [Abstract][Full Text] [Related]
18. Applying land use regression model to estimate spatial variation of PM₂.₅ in Beijing, China. Wu J; Li J; Peng J; Li W; Xu G; Dong C Environ Sci Pollut Res Int; 2015 May; 22(9):7045-61. PubMed ID: 25487555 [TBL] [Abstract][Full Text] [Related]
19. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging]. Yang SH; Zhang HT; Guo L; Ren Y Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015 [TBL] [Abstract][Full Text] [Related]
20. Comparison of land use regression models for NO Kashima S; Yorifuji T; Sawada N; Nakaya T; Eboshida A Sci Total Environ; 2018 Aug; 631-632():1029-1037. PubMed ID: 29727929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]