BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 2573154)

  • 1. Effect of carboxylic acid side chains on the absorption maximum of visual pigments.
    Zhukovsky EA; Oprian DD
    Science; 1989 Nov; 246(4932):928-30. PubMed ID: 2573154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8309-13. PubMed ID: 2573063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing the location of the Schiff base counterion in rhodopsin.
    Zhukovsky EA; Robinson PR; Oprian DD
    Biochemistry; 1992 Oct; 31(42):10400-5. PubMed ID: 1329948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.
    Fukada Y; Okano T; Shichida Y; Yoshizawa T; Trehan A; Mead D; Denny M; Asato AE; Liu RS
    Biochemistry; 1990 Mar; 29(12):3133-40. PubMed ID: 2140051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asp83, Glu113 and Glu134 are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin.
    Janssen JJ; De Caluwé GL; De Grip WJ
    FEBS Lett; 1990 Jan; 260(1):113-8. PubMed ID: 2105232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution structural studies of the retinal--Glu113 interaction in rhodopsin.
    Han M; Smith SO
    Biophys Chem; 1995; 56(1-2):23-9. PubMed ID: 7662866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M; DeDecker BS; Smith SO
    Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogue pigment studies of chromophore-protein interactions in metarhodopsins.
    Renk G; Crouch RK
    Biochemistry; 1989 Jan; 28(2):907-12. PubMed ID: 2540811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin.
    Nathans J
    Biochemistry; 1990 Oct; 29(41):9746-52. PubMed ID: 1980212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halorhodopsin and sensory rhodopsin contain a C6-C7 s-trans retinal chromophore.
    Baselt DR; Fodor SP; van der Steen R; Lugtenburg J; Bogomolni RA; Mathies RA
    Biophys J; 1989 Jan; 55(1):193-6. PubMed ID: 2930820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family.
    Terakita A; Yamashita T; Shichida Y
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14263-7. PubMed ID: 11106382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals.
    Koutalos Y; Ebrey TG; Tsuda M; Odashima K; Lien T; Park MH; Shimizu N; Derguini F; Nakanishi K; Gilson HR
    Biochemistry; 1989 Mar; 28(6):2732-9. PubMed ID: 2525050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments.
    Liang J; Steinberg G; Livnah N; Sheves M; Ebrey TG; Tsuda M
    Biophys J; 1994 Aug; 67(2):848-54. PubMed ID: 7948697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metaretinochrome in membranes as an effective donor of 11-cis retinal for the synthesis of squid rhodopsin.
    Seki T
    J Gen Physiol; 1984 Jul; 84(1):49-62. PubMed ID: 6747599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 9,13-dicis-rhodopsin and its one-photon-one-double-bond isomerization.
    Shichida Y; Nakamura K; Yoshizawa T; Trehan A; Denny M; Liu RS
    Biochemistry; 1988 Aug; 27(17):6495-9. PubMed ID: 2975508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pKa of the protonated Schiff base of visual pigments.
    Ebrey TG
    Methods Enzymol; 2000; 315():196-207. PubMed ID: 10736703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.