These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25731644)

  • 1. Identifying chemical functionalization on individual carbon nanotubes and graphene by local vibrational fingerprinting.
    Zuccaro L; Kern K; Balasubramanian K
    ACS Nano; 2015 Mar; 9(3):3314-23. PubMed ID: 25731644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization.
    Cheng HC; Shiue RJ; Tsai CC; Wang WH; Chen YT
    ACS Nano; 2011 Mar; 5(3):2051-9. PubMed ID: 21322639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
    Feng JM; Dai YJ
    Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet chemical functionalization of graphene.
    Hirsch A; Englert JM; Hauke F
    Acc Chem Res; 2013 Jan; 46(1):87-96. PubMed ID: 22946482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging carbon nanostructures' reactivity: a complementary strategy to define chemical structure.
    PĂ©rez-Luna V; Cisneros M; Bittencourt C; Saucedo-Orozco I; Quintana M
    R Soc Open Sci; 2018 Aug; 5(8):180605. PubMed ID: 30225055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.
    Wang A; Ye J; Humphrey MG; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705704. PubMed ID: 29450914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene.
    Koehler FM; Jacobsen A; Ensslin K; Stampfer C; Stark WJ
    Small; 2010 May; 6(10):1125-30. PubMed ID: 20449850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Fingertip"-guided noncovalent functionalization of carbon nanotubes by dendrons.
    Woo S; Lee Y; Sunkara V; Cheedarala RK; Shin HS; Choi HC; Park JW
    Langmuir; 2007 Nov; 23(23):11373-6. PubMed ID: 17918872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization.
    Wang QH; Shih CJ; Paulus GL; Strano MS
    J Am Chem Soc; 2013 Dec; 135(50):18866-75. PubMed ID: 24266808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-modified stress dynamics and wetting characteristics of carbon nanotubes and multilayer graphene for electron field emission investigations.
    Sharma H; Agarwal DC; Sharma M; Shukla AK; Avasthi DK; Vankar VD
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12531-40. PubMed ID: 25003718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine.
    Burdanova MG; Kharlamova MV; Kramberger C; Nikitin MP
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweet carbon nanostructures: carbohydrate conjugates with carbon nanotubes and graphene and their applications.
    Chen Y; Star A; Vidal S
    Chem Soc Rev; 2013 Jun; 42(11):4532-42. PubMed ID: 23247183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications.
    Georgakilas V; Tiwari JN; Kemp KC; Perman JA; Bourlinos AB; Kim KS; Zboril R
    Chem Rev; 2016 May; 116(9):5464-519. PubMed ID: 27033639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry with graphene and graphene oxide-challenges for synthetic chemists.
    Eigler S; Hirsch A
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7720-38. PubMed ID: 24962439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect.
    Lim H; Lee JS; Shin HJ; Shin HS; Choi HC
    Langmuir; 2010 Jul; 26(14):12278-84. PubMed ID: 20536169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.