BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25731685)

  • 1. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure.
    von Moos N; Maillard L; Slaveykova VI
    Aquat Toxicol; 2015 Apr; 161():267-75. PubMed ID: 25731685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms.
    Santschi C; Von Moos N; Koman VB; Slaveykova VI; Bowen P; Martin OJ
    J Nanobiotechnology; 2017 Mar; 15(1):19. PubMed ID: 28270155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.
    Melegari SP; Perreault F; Costa RH; Popovic R; Matias WG
    Aquat Toxicol; 2013 Oct; 142-143():431-40. PubMed ID: 24113166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris.
    Wang L; Huang X; Sun W; Too HZ; Laserna AKC; Li SFY
    Environ Pollut; 2020 Mar; 258():113647. PubMed ID: 31810715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii.
    Gunawan C; Sirimanoonphan A; Teoh WY; Marquis CP; Amal R
    J Hazard Mater; 2013 Sep; 260():984-92. PubMed ID: 23892165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
    Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L
    Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.
    Kasemets K; Suppi S; Künnis-Beres K; Kahru A
    Chem Res Toxicol; 2013 Mar; 26(3):356-67. PubMed ID: 23339633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.
    Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure.
    Boyle D; Clark NJ; Handy RD
    Ecotoxicol Environ Saf; 2020 Mar; 190():109985. PubMed ID: 31841893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii.
    Cheloni G; Cosio C; Slaveykova VI
    Aquat Toxicol; 2014 Oct; 155():275-82. PubMed ID: 25072593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints.
    Esperanza M; Cid Á; Herrero C; Rioboo C
    Aquat Toxicol; 2015 Aug; 165():210-21. PubMed ID: 26117094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress.
    Cheloni G; Slaveykova VI
    Aquat Toxicol; 2021 Feb; 231():105711. PubMed ID: 33338702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-species interactions modulate copper toxicity under different visible light conditions.
    Cheloni G; Gagnaux V; Slaveykova VI
    Ecotoxicol Environ Saf; 2019 Apr; 170():771-777. PubMed ID: 30593990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sediment-associated CuO nanoparticles on Cu bioaccumulation and oxidative stress responses in freshwater snail Bellamya aeruginosa.
    Ma T; Gong S; Tian B
    Sci Total Environ; 2017 Feb; 580():797-804. PubMed ID: 27939938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants.
    Míguez L; Esperanza M; Seoane M; Cid Á
    Ecotoxicol Environ Saf; 2021 Jan; 208():111646. PubMed ID: 33396166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of glutathione endpoints for measuring copper stress in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Karner Perkins DA; Hemming JD; Armstrong DE
    Environ Toxicol Chem; 2007 Aug; 26(8):1563-71. PubMed ID: 17702327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii.
    Jiang Y; Zhu Y; Hu Z; Lei A; Wang J
    Ecotoxicology; 2016 Sep; 25(7):1417-25. PubMed ID: 27395008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.