BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25731689)

  • 1. QCT-based failure analysis of proximal femurs under various loading orientations.
    Mirzaei M; Keshavarzian M; Alavi F; Amiri P; Samiezadeh S
    Med Biol Eng Comput; 2015 Jun; 53(6):477-86. PubMed ID: 25731689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method.
    Mirzaei M; Keshavarzian M; Naeini V
    Bone; 2014 Jul; 64():108-14. PubMed ID: 24735974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs.
    Luisier B; Dall'Ara E; Pahr DH
    J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach of predicting fracture load in the human proximal femur using non-invasive QCT imaging technique.
    Lee T; Pereira BP; Chung YS; Oh HJ; Choi JB; Lim D; Shin JH
    Ann Biomed Eng; 2009 May; 37(5):966-75. PubMed ID: 19288197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
    Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T
    Bone; 2012 Apr; 50(4):824-9. PubMed ID: 22306697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology based anisotropic finite element models of the proximal femur validated with experimental data.
    Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B
    Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration.
    Nishiyama KK; Gilchrist S; Guy P; Cripton P; Boyd SK
    J Biomech; 2013 Apr; 46(7):1231-6. PubMed ID: 23540722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N; Yosibash Z; Milgrom C
    J Biomech; 2009 Feb; 42(3):234-41. PubMed ID: 19118831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method.
    Mirzaei M; Zeinali A; Razmjoo A; Nazemi M
    J Biomech; 2009 Aug; 42(11):1584-91. PubMed ID: 19457486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can CT image deblurring improve finite element predictions at the proximal femur?
    Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F
    J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro.
    Dall'Ara E; Luisier B; Schmidt R; Kainberger F; Zysset P; Pahr D
    Bone; 2013 Jan; 52(1):27-38. PubMed ID: 22985891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The predictive ability of a QCT-FE model of the proximal femoral stiffness under multiple load cases is strongly influenced by experimental uncertainties.
    Amini M; Reisinger A; Synek A; Hirtler L; Pahr D
    J Mech Behav Biomed Mater; 2023 Mar; 139():105664. PubMed ID: 36657193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fatigue loading model for investigation of iatrogenic subtrochanteric fractures of the femur.
    Tsai AG; Reich MS; Bensusan J; Ashworth T; Marcus RE; Akkus O
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):981-7. PubMed ID: 24125692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.