These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25731924)

  • 1. Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.
    López R; Fernández C; Martínez O; Sánchez ME
    Bioresour Technol; 2015 May; 183():153-62. PubMed ID: 25731924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.
    Huang L; Liu J; He Y; Sun S; Chen J; Sun J; Chang K; Kuo J; Ning X
    Bioresour Technol; 2016 Oct; 218():631-42. PubMed ID: 27416513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic study on the catalysis of KCl, K
    Deng S; Wang X; Zhang J; Liu Z; Mikulčić H; Vujanović M; Tan H; Duić N
    J Environ Manage; 2018 Jul; 218():50-58. PubMed ID: 29665486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison between Several Response Surface Methodology Designs and a Neural Network Model to Optimise the Oxidation Conditions of a Lignocellulosic Blend.
    López R; Fernández C; Pereira FJ; Díez A; Cara J; Martínez O; Sánchez ME
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32438759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of oxygen concentration on oxy-fuel combustion characteristic and interactions of coal gangue and pine sawdust.
    Zhang Y; Zhao J; Ma Z; Yang F; Cheng F
    Waste Manag; 2019 Mar; 87():288-294. PubMed ID: 31109528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxy-fuel co-combustion dynamics of phytoremediation biomass and textile dyeing sludge: Gas-to-ash pollution abatement.
    Wu X; Liu J; Wei Z; Chen Z; Evrendilek F; Huang W
    Sci Total Environ; 2022 Jun; 825():153656. PubMed ID: 35167893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.
    Chen L; Zhang H; Li J; Lu M; Guo X; Han L
    Bioresour Technol; 2015 Feb; 177():8-16. PubMed ID: 25479388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modelling of the degradation of the alpha-tocopherol in biodiesel-rape methyl ester.
    Bostyn S; Duval-Onen F; Porte C; Coïc JP; Fauduet H
    Bioresour Technol; 2008 Sep; 99(14):6439-45. PubMed ID: 18178082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.
    Xie W; Wen S; Liu J; Xie W; Kuo J; Lu X; Sun S; Chang K; Buyukada M; Evrendilek F
    Bioresour Technol; 2018 May; 255():88-95. PubMed ID: 29414178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV; Casal D; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Jul; 101(14):5601-8. PubMed ID: 20189802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl deposit in oxy-biomass combustion.
    Zhang J; Rahman ZU; Wang X; Wang Z; Li P; Wang Y; Bate D; Zhao K; Tan H
    J Environ Manage; 2020 Jun; 263():110411. PubMed ID: 32174540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend.
    Rueda-Ordóñez YJ; Arias-Hernández CJ; Manrique-Pinto JF; Gauthier-Maradei P; Bizzo WA
    Bioresour Technol; 2019 Nov; 292():121923. PubMed ID: 31404752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A detailed one-dimensional model of combustion of a woody biomass particle.
    Haseli Y; van Oijen JA; de Goey LP
    Bioresour Technol; 2011 Oct; 102(20):9772-82. PubMed ID: 21855327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle analysis of fuel production from fast pyrolysis of biomass.
    Han J; Elgowainy A; Dunn JB; Wang MQ
    Bioresour Technol; 2013 Apr; 133():421-8. PubMed ID: 23454388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental and theoretical investigation on torrefaction of a large wet wood particle.
    Basu P; Sadhukhan AK; Gupta P; Rao S; Dhungana A; Acharya B
    Bioresour Technol; 2014 May; 159():215-22. PubMed ID: 24657751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission and conversion of NO from algal biomass combustion in O
    Zhao B; Su Y
    J Environ Manage; 2019 Nov; 250():109419. PubMed ID: 31472373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.
    Togbé C; May-Carle JB; Dayma G; Dagaut P
    J Phys Chem A; 2010 Mar; 114(11):3896-908. PubMed ID: 20235606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.