BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25732072)

  • 1. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations.
    Zhang S; Li X; Lv J; Jiang X; Guo L; Liu T
    Brain Imaging Behav; 2016 Mar; 10(1):21-32. PubMed ID: 25732072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.
    Jiang X; Li X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Hum Brain Mapp; 2015 Dec; 36(12):5301-19. PubMed ID: 26466353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised dictionary learning for inferring concurrent brain networks.
    Zhao S; Han J; Lv J; Jiang X; Hu X; Zhao Y; Ge B; Guo L; Liu T
    IEEE Trans Med Imaging; 2015 Oct; 34(10):2036-45. PubMed ID: 25838519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations.
    Song L; Ren Y; Hou Y; He X; Liu H
    eNeuro; 2022; 9(3):. PubMed ID: 35606152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.
    Zhao S; Han J; Hu X; Jiang X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):743-757. PubMed ID: 28600737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data.
    Ren Y; Fang J; Lv J; Hu X; Guo CC; Guo L; Xu J; Potenza MN; Liu T
    Brain Imaging Behav; 2017 Aug; 11(4):1179-1191. PubMed ID: 27704410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse representation of whole-brain fMRI signals for identification of functional networks.
    Lv J; Jiang X; Li X; Zhu D; Chen H; Zhang T; Zhang S; Hu X; Han J; Huang H; Zhang J; Guo L; Liu T
    Med Image Anal; 2015 Feb; 20(1):112-34. PubMed ID: 25476415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time presurgical resting-state fMRI in patients with brain tumors: Quality control and comparison with task-fMRI and intraoperative mapping.
    Vakamudi K; Posse S; Jung R; Cushnyr B; Chohan MO
    Hum Brain Mapp; 2020 Feb; 41(3):797-814. PubMed ID: 31692177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse representation of group-wise FMRI signals.
    Lv J; Li X; Zhu D; Jiang X; Zhang X; Hu X; Zhang T; Guo L; Liu T
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):608-16. PubMed ID: 24505812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional brain networks reconstruction using group sparsity-regularized learning.
    Zhao Q; Li WXY; Jiang X; Lv J; Lu J; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):758-770. PubMed ID: 28600738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse Representation-Based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling: A Task fMRI Study.
    Jeong S; Li X; Yang J; Li Q; Tarokh V
    IEEE Access; 2020; 8():36728-36740. PubMed ID: 35528966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
    Huang H; Hu X; Zhao Y; Makkie M; Dong Q; Zhao S; Guo L; Liu T
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1551-1561. PubMed ID: 28641247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal sampling for efficient sparse representation of resting state FMRI data.
    Ge B; Makkie M; Wang J; Zhao S; Jiang X; Li X; Lv J; Zhang S; Zhang W; Han J; Guo L; Liu T
    Brain Imaging Behav; 2016 Dec; 10(4):1206-1222. PubMed ID: 26646924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort.
    Guell X; Gabrieli JDE; Schmahmann JD
    Neuroimage; 2018 May; 172():437-449. PubMed ID: 29408539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing brain-cognition relationship: Integrating task-based fMRI across tasks markedly boosts prediction and test-retest reliability.
    Tetereva A; Li J; Deng JD; Stringaris A; Pat N
    Neuroimage; 2022 Nov; 263():119588. PubMed ID: 36057404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics.
    Makkie M; Huang H; Zhao Y; Vasilakos AV; Liu T
    Neurocomputing (Amst); 2019 Jan; 325():20-30. PubMed ID: 31354187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
    Cao H; Plichta MM; Schäfer A; Haddad L; Grimm O; Schneider M; Esslinger C; Kirsch P; Meyer-Lindenberg A; Tost H
    Neuroimage; 2014 Jan; 84():888-900. PubMed ID: 24055506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.