These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25732134)

  • 1. Most highly expressed protein-coding genes have a single dominant isoform.
    Ezkurdia I; Rodriguez JM; Carrillo-de Santa Pau E; Vázquez J; Valencia A; Tress ML
    J Proteome Res; 2015 Apr; 14(4):1880-7. PubMed ID: 25732134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.
    Abascal F; Ezkurdia I; Rodriguez-Rivas J; Rodriguez JM; del Pozo A; Vázquez J; Valencia A; Tress ML
    PLoS Comput Biol; 2015 Jun; 11(6):e1004325. PubMed ID: 26061177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APPRIS principal isoforms and MANE Select transcripts define reference splice variants.
    Pozo F; Rodriguez JM; Martínez Gómez L; Vázquez J; Tress ML
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii89-ii94. PubMed ID: 36124785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution pattern of genetic variation in the transcript isoforms of the alternatively spliced protein-coding genes in the human genome.
    Liu T; Lin K
    Mol Biosyst; 2015 May; 11(5):1378-88. PubMed ID: 25820936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APPRIS WebServer and WebServices.
    Rodriguez JM; Carro A; Valencia A; Tress ML
    Nucleic Acids Res; 2015 Jul; 43(W1):W455-9. PubMed ID: 25990727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APPRIS: selecting functionally important isoforms.
    Rodriguez JM; Pozo F; Cerdán-Vélez D; Di Domenico T; Vázquez J; Tress ML
    Nucleic Acids Res; 2022 Jan; 50(D1):D54-D59. PubMed ID: 34755885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APPRIS: annotation of principal and alternative splice isoforms.
    Rodriguez JM; Maietta P; Ezkurdia I; Pietrelli A; Wesselink JJ; Lopez G; Valencia A; Tress ML
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D110-7. PubMed ID: 23161672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Missing Human Protein Isoforms Based on Ab Initio Prediction, RNA-seq and Proteomics.
    Hu Z; Scott HS; Qin G; Zheng G; Chu X; Xie L; Adelson DL; Oftedal BE; Venugopal P; Babic M; Hahn CN; Zhang B; Wang X; Li N; Wei C
    Sci Rep; 2015 Jul; 5():10940. PubMed ID: 26156868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpliceProt: a protein sequence repository of predicted human splice variants.
    Tavares R; de Miranda Scherer N; Pauletti BA; Araújo E; Folador EL; Espindola G; Ferreira CG; Paes Leme AF; de Oliveira PS; Passetti F
    Proteomics; 2014 Feb; 14(2-3):181-5. PubMed ID: 24273012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEPPI: a peptidomic database of human protein isoforms for proteomics experiments.
    Zhou A; Zhang F; Chen JY
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S7. PubMed ID: 20946618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver.
    Wu P; Zhang H; Lin W; Hao Y; Ren L; Zhang C; Li N; Wei H; Jiang Y; He F
    J Proteome Res; 2014 May; 13(5):2409-19. PubMed ID: 24717071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splice-mediated Variants of Proteins (SpliVaP) - data and characterization of changes in signatures among protein isoforms due to alternative splicing.
    Floris M; Orsini M; Thanaraj TA
    BMC Genomics; 2008 Oct; 9():453. PubMed ID: 18831736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Splicing May Not Be the Key to Proteome Complexity.
    Tress ML; Abascal F; Valencia A
    Trends Biochem Sci; 2017 Feb; 42(2):98-110. PubMed ID: 27712956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of alternative splice variants at the proteome level in Aspergillus flavus.
    Chang KY; Georgianna DR; Heber S; Payne GA; Muddiman DC
    J Proteome Res; 2010 Mar; 9(3):1209-17. PubMed ID: 20047314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data.
    Tay AP; Pang CN; Twine NA; Hart-Smith G; Harkness L; Kassem M; Wilkins MR
    J Proteome Res; 2015 Sep; 14(9):3541-54. PubMed ID: 25961807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural genomics analysis of alternative splicing and application to isoform structure modeling.
    Wang P; Yan B; Guo JT; Hicks C; Xu Y
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18920-5. PubMed ID: 16354838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APPRIS 2017: principal isoforms for multiple gene sets.
    Rodriguez JM; Rodriguez-Rivas J; Di Domenico T; Vázquez J; Valencia A; Tress ML
    Nucleic Acids Res; 2018 Jan; 46(D1):D213-D217. PubMed ID: 29069475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics studies confirm the presence of alternative protein isoforms on a large scale.
    Tress ML; Bodenmiller B; Aebersold R; Valencia A
    Genome Biol; 2008; 9(11):R162. PubMed ID: 19017398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.
    Ezkurdia I; del Pozo A; Frankish A; Rodriguez JM; Harrow J; Ashman K; Valencia A; Tress ML
    Mol Biol Evol; 2012 Sep; 29(9):2265-83. PubMed ID: 22446687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing.
    Gupta S; Zink D; Korn B; Vingron M; Haas SA
    BMC Genomics; 2004 Sep; 5():72. PubMed ID: 15453915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.