These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25732328)

  • 1. Mesoscale mechanics of twisting carbon nanotube yarns.
    Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2015 Mar; 7(12):5435-45. PubMed ID: 25732328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs.
    Yazdandoost F; Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2017 May; 9(17):5565-5576. PubMed ID: 28405667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive model of the tensile strength of twisted carbon nanotube yarns.
    Jeon SY; Jang J; Koo BW; Kim YW; Yu WR
    Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism.
    Liu X; Lu W; Ayala OM; Wang LP; Karlsson AM; Yang Q; Chou TW
    Nanoscale; 2013 Mar; 5(5):2002-8. PubMed ID: 23370166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.
    Liu K; Zhu F; Liu L; Sun Y; Fan S; Jiang K
    Nanoscale; 2012 Jun; 4(11):3389-93. PubMed ID: 22538869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.
    Hill FA; Havel TF; Hart AJ; Livermore C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7198-207. PubMed ID: 23876225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation.
    Shikata R; Suzuki H; Hayashi Y; Hasegawa T; Shigeeda Y; Inoue H; Yajima W; Kametaka J; Maetani M; Tanaka Y; Nishikawa T; Maeda S; Hayashi Y; Hada M
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35196260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the strength of yarn-like carbon nanotube fibers.
    Vilatela JJ; Elliott JA; Windle AH
    ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.
    Beese AM; Wei X; Sarkar S; Ramachandramoorthy R; Roenbeck MR; Moravsky A; Ford M; Yavari F; Keane DT; Loutfy RO; Nguyen ST; Espinosa HD
    ACS Nano; 2014 Nov; 8(11):11454-66. PubMed ID: 25353651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.
    Inoue Y; Nakamura K; Miyasaka Y; Nakano T; Kletetschka G
    Nanotechnology; 2016 Mar; 27(11):115701. PubMed ID: 26871413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear and friction between carbon nanotubes in bundles and yarns.
    Paci JT; Furmanchuk A; Espinosa HD; Schatz GC
    Nano Lett; 2014 Nov; 14(11):6138-47. PubMed ID: 25279773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.