These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25732328)

  • 41. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices.
    Wallace EJ; D'Rozario RS; Sanchez BM; Sansom MS
    Nanoscale; 2010 Jun; 2(6):967-75. PubMed ID: 20648294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical and thermal properties of carbon nanotubes in carbon nanotube fibers under tension-torsion loading.
    Niu M; Cui C; Tian R; Zhao Y; Miao L; Hao W; Li J; Sui C; He X; Wang C
    RSC Adv; 2022 Oct; 12(46):30085-30093. PubMed ID: 36329939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superaligned carbon nanotube arrays, films, and yarns: a road to applications.
    Jiang K; Wang J; Li Q; Liu L; Li C; Fan S
    Adv Mater; 2011 Mar; 23(9):1154-61. PubMed ID: 21465707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations.
    Chang R; Ayton GS; Voth GA
    J Chem Phys; 2005 Jun; 122(24):244716. PubMed ID: 16035802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The devil and holy water: protein and carbon nanotube hybrids.
    Calvaresi M; Zerbetto F
    Acc Chem Res; 2013 Nov; 46(11):2454-63. PubMed ID: 23826731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes.
    Anastassiou A; Karahaliou EK; Alexiadis O; Mavrantzas VG
    J Chem Phys; 2013 Oct; 139(16):164711. PubMed ID: 24182068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.
    Liou KH; Tsou NT; Kang DY
    Nanoscale; 2015 Oct; 7(39):16222-9. PubMed ID: 26204559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental-computational study of shear interactions within double-walled carbon nanotube bundles.
    Filleter T; Yockel S; Naraghi M; Paci JT; Compton OC; Mayes ML; Nguyen ST; Schatz GC; Espinosa HD
    Nano Lett; 2012 Feb; 12(2):732-42. PubMed ID: 22214436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon Hybrid Materials-Design, Manufacturing, and Applications.
    Pujari A; Chauhan D; Chitranshi M; Hudepohl R; Kubley A; Shanov V; Schulz M
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology.
    Stein IY; Wardle BL
    Nanotechnology; 2016 Jan; 27(3):035701. PubMed ID: 26636342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gelatin yarns inspired by tendons--structural and mechanical perspectives.
    Selle HK; Bar-On B; Marom G; Wagner HD
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():1-7. PubMed ID: 25492166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.
    McCarty J; Clark AJ; Copperman J; Guenza MG
    J Chem Phys; 2014 May; 140(20):204913. PubMed ID: 24880331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Collapse and stability of single- and multi-wall carbon nanotubes.
    Xiao J; Liu B; Huang Y; Zuo J; Hwang KC; Yu MF
    Nanotechnology; 2007 Oct; 18(39):395703. PubMed ID: 21730428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure-Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing.
    Headrick RJ; Tsentalovich DE; Berdegué J; Bengio EA; Liberman L; Kleinerman O; Lucas MS; Talmon Y; Pasquali M
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29322634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.