These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25732328)

  • 61. Single-step process to improve the mechanical properties of carbon nanotube yarn.
    Evora MC; Lu X; Hiremath N; Kang NG; Hong K; Uribe R; Bhat G; Mays J
    Beilstein J Nanotechnol; 2018; 9():545-554. PubMed ID: 29527431
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Twisting Carbon Nanotube Ropes with the Mesoscopic Distinct Element Method: Geometry, Packing, and Nanomechanics.
    Wang Y; Ostanin I; Gaidău C; Dumitric T
    Langmuir; 2015 Nov; 31(45):12323-7. PubMed ID: 26411396
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations.
    Yuan X; Wang Y
    Nanotechnology; 2018 Feb; 29(7):075705. PubMed ID: 29256867
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.
    Xiao S; Zhu H; Wang L; Chen L; Liang H
    Phys Chem Chem Phys; 2014 Aug; 16(30):16003-12. PubMed ID: 24963820
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Elastic deformation of carbon-nanotube nanorings.
    Zheng M; Ke C
    Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Importance of Interface in the Coarse-Grained Model of CNT /Epoxy Nanocomposites.
    Duan K; Li L; Wang F; Meng W; Hu Y; Wang X
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31627426
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes.
    Yang Z; Kuang W; Tang Z; Guo B; Zhang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7666-7674. PubMed ID: 28168871
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanical properties of polygonal carbon nanotubes.
    Huang L; Cao D
    Nanoscale; 2012 Sep; 4(17):5420-4. PubMed ID: 22833232
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications.
    Wei Y; Liu L; Liu P; Xiao L; Jiang K; Fan S
    Nanotechnology; 2008 Nov; 19(47):475707. PubMed ID: 21836288
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of extreme mechanical densification on the electrical properties of carbon nanotube micro-yarns.
    Miralaei C; Le Floch S; Debord R; Nguyen HV; Da Silva JC; San-Miguel A; Le Poche H; Pailhès S; Pischedda V
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35319494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers.
    An Q; Rider AN; Thostenson ET
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2022-32. PubMed ID: 23379418
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.
    Pugno NM; Bosia F; Carpinteri A
    Small; 2008 Aug; 4(8):1044-52. PubMed ID: 18666164
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.
    Zhang S; Koziol KK; Kinloch IA; Windle AH
    Small; 2008 Aug; 4(8):1217-22. PubMed ID: 18666161
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays.
    Raney JR; Fraternali F; Daraio C
    Nanotechnology; 2013 Jun; 24(25):255707. PubMed ID: 23727816
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.
    Ozden S; Yang Y; Tiwary CS; Bhowmick S; Asif S; Penev ES; Yakobson BI; Ajayan PM
    Nano Lett; 2016 Jan; 16(1):232-6. PubMed ID: 26618517
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly.
    Vögele M; Köfinger J; Hummer G
    ACS Appl Bio Mater; 2024 Feb; 7(2):528-534. PubMed ID: 36070609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.