BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25732354)

  • 1. Electrochemical Detection in Stacked Paper Networks.
    Liu X; Lillehoj PB
    J Lab Autom; 2015 Aug; 20(4):506-10. PubMed ID: 25732354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications.
    Chinnadayyala SR; Park J; Le HTN; Santhosh M; Kadam AN; Cho S
    Biosens Bioelectron; 2019 Feb; 126():68-81. PubMed ID: 30391911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct writing electrodes using a ball pen for paper-based point-of-care testing.
    Li Z; Li F; Hu J; Wee WH; Han YL; Pingguan-Murphy B; Lu TJ; Xu F
    Analyst; 2015 Aug; 140(16):5526-35. PubMed ID: 26079757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices.
    Noiphung J; Songjaroen T; Dungchai W; Henry CS; Chailapakul O; Laiwattanapaisal W
    Anal Chim Acta; 2013 Jul; 788():39-45. PubMed ID: 23845479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver-chitosan.
    Li W; Li L; Ge S; Song X; Ge L; Yan M; Yu J
    Biosens Bioelectron; 2014 Jun; 56():167-73. PubMed ID: 24487104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of gold-sputtered electrofluidic paper on wire-included analytical platforms for glucose biosensing.
    Núnez-Bajo E; Carmen Blanco-López M; Costa-García A; Teresa Fernández-Abedul M
    Biosens Bioelectron; 2017 May; 91():824-832. PubMed ID: 28157656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics.
    Punjiya M; Chung Hee Moon ; Yu Chen ; Sonkusale S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():307-310. PubMed ID: 28268338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers.
    Uludag Y; Narter F; Sağlam E; Köktürk G; Gök MY; Akgün M; Barut S; Budak S
    Anal Bioanal Chem; 2016 Nov; 408(27):7775-7783. PubMed ID: 27562751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical paper-based microfluidic devices.
    Adkins J; Boehle K; Henry C
    Electrophoresis; 2015 Aug; 36(16):1811-24. PubMed ID: 25820492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible enzymatic roller pens for direct writing of biocatalytic materials: "do-it-yourself" electrochemical biosensors.
    Bandodkar AJ; Jia W; Ramírez J; Wang J
    Adv Healthc Mater; 2015 Jun; 4(8):1215-24. PubMed ID: 25721554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of graphene for in vitro and in vivo electrochemical biosensing.
    Janegitz BC; Silva TA; Wong A; Ribovski L; Vicentini FC; Taboada Sotomayor MDP; Fatibello-Filho O
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):224-233. PubMed ID: 27005454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors.
    Delaney JL; Hogan CF
    Methods Mol Biol; 2015; 1256():277-89. PubMed ID: 25626546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode.
    Li L; Zhang Y; Liu F; Su M; Liang L; Ge S; Yu J
    Chem Commun (Camb); 2015 Sep; 51(74):14030-3. PubMed ID: 26248032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries.
    Salahandish R; Hassani M; Zare A; Haghayegh F; Sanati-Nezhad A
    Lab Chip; 2022 Apr; 22(8):1542-1555. PubMed ID: 35297932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid flow in multilayer microfluidic paper-based analytical devices.
    Channon RB; Nguyen MP; Scorzelli AG; Henry EM; Volckens J; Dandy DS; Henry CS
    Lab Chip; 2018 Feb; 18(5):793-802. PubMed ID: 29431751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.