BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 25732611)

  • 1. The effects of chromatin organization on variation in mutation rates in the genome.
    Makova KD; Hardison RC
    Nat Rev Genet; 2015 Apr; 16(4):213-23. PubMed ID: 25732611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer Mutational Processes Vary in Their Association with Replication Timing and Chromatin Accessibility.
    Yaacov A; Vardi O; Blumenfeld B; Greenberg A; Massey DJ; Koren A; Adar S; Simon I; Rosenberg S
    Cancer Res; 2021 Dec; 81(24):6106-6116. PubMed ID: 34702725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure and evolution in the human genome.
    Prendergast JG; Campbell H; Gilbert N; Dunlop MG; Bickmore WA; Semple CA
    BMC Evol Biol; 2007 May; 7():72. PubMed ID: 17490477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genome-wide view of mutation rate co-variation using multivariate analyses.
    Ananda G; Chiaromonte F; Makova KD
    Genome Biol; 2011; 12(3):R27. PubMed ID: 21426544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Accelerated Rates of Insertions and Deletions Independent of Rates of Nucleotide Substitution.
    Navarro Leija O; Varghese S; Han MV
    J Mol Evol; 2016 Oct; 83(3-4):137-146. PubMed ID: 27770175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Determinants of the Mutational Landscape of the Human Genome.
    Gonzalez-Perez A; Sabarinathan R; Lopez-Bigas N
    Cell; 2019 Mar; 177(1):101-114. PubMed ID: 30901533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The non-random patterns of genetic variation induced by asymmetric somatic hybridization in wheat.
    Wang M; Ji Y; Feng S; Liu C; Xiao Z; Wang X; Wang Y; Xia G
    BMC Plant Biol; 2018 Oct; 18(1):244. PubMed ID: 30332989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-scale signatures of molecular evolution reconcile models of indel-associated mutation.
    Jovelin R; Cutter AD
    Genome Biol Evol; 2013; 5(5):978-86. PubMed ID: 23558593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational Landscape of Spontaneous Base Substitutions and Small Indels in Experimental
    Konrad A; Brady MJ; Bergthorsson U; Katju V
    Genetics; 2019 Jul; 212(3):837-854. PubMed ID: 31110155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-cancer analysis of somatic mutations across 21 neuroendocrine tumor types.
    Cao Y; Zhou W; Li L; Wang J; Gao Z; Jiang Y; Jiang X; Shan A; Bailey MH; Huang KL; Sun SQ; McLellan MD; Niu B; Wang W; Ding L; Ning G
    Cell Res; 2018 May; 28(5):601-604. PubMed ID: 29507395
    [No Abstract]   [Full Text] [Related]  

  • 11. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes.
    Malouf GG; Su X; Yao H; Gao J; Xiong L; He Q; CompƩrat E; Couturier J; MoliniƩ V; Escudier B; Camparo P; Doss DJ; Thompson EJ; Khayat D; Wood CG; Yu W; Teh BT; Weinstein J; Tannir NM
    Clin Cancer Res; 2014 Aug; 20(15):4129-40. PubMed ID: 24899691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes.
    Montgomery SB; Goode DL; Kvikstad E; Albers CA; Zhang ZD; Mu XJ; Ananda G; Howie B; Karczewski KJ; Smith KS; Anaya V; Richardson R; Davis J; ; MacArthur DG; Sidow A; Duret L; Gerstein M; Makova KD; Marchini J; McVean G; Lunter G
    Genome Res; 2013 May; 23(5):749-61. PubMed ID: 23478400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Gerrymandering: optimal division of the genome into regions with cancer type specific differences in mutation rates.
    Young A; Chmura J; Park Y; Morris Q; Atwal G
    Pac Symp Biocomput; 2020; 25():274-285. PubMed ID: 31797603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences.
    McDonald MJ; Wang WC; Huang HD; Leu JY
    PLoS Biol; 2011 Jun; 9(6):e1000622. PubMed ID: 21697975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scales and mechanisms of somatic mutation rate variation across the human genome.
    Supek F; Lehner B
    DNA Repair (Amst); 2019 Sep; 81():102647. PubMed ID: 31307927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.
    Gundry M; Vijg J
    Mutat Res; 2012 Jan; 729(1-2):1-15. PubMed ID: 22016070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Replication-Transcription Conflicts Do Not Significantly Contribute to Spontaneous Mutations Due to Replication Errors in Escherichia coli.
    Foster PL; Niccum BA; Lee H
    mBio; 2021 Oct; 12(5):e0250321. PubMed ID: 34634932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong heterogeneity in mutation rate causes misleading hallmarks of natural selection on indel mutations in the human genome.
    Kvikstad EM; Duret L
    Mol Biol Evol; 2014 Jan; 31(1):23-36. PubMed ID: 24113537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline.
    Kaiser VB; Semple CA
    Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.