These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25732834)

  • 1. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials.
    Adlakha I; Solanki KN
    Sci Rep; 2015 Mar; 5():8692. PubMed ID: 25732834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys.
    Barnett AK; Hussein O; Alghalayini M; Hinojos A; Nathaniel JE; Medlin DL; Hattar K; Boyce BL; Abdeljawad F
    Nano Lett; 2024 Aug; 24(31):9627-9634. PubMed ID: 39072492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple junction transport and the impact of grain boundary width in nanocrystalline Cu.
    Chellali MR; Balogh Z; Bouchikhaoui H; Schlesiger R; Stender P; Zheng L; Schmitz G
    Nano Lett; 2012 Jul; 12(7):3448-54. PubMed ID: 22657752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria.
    Dholabhai PP; Aguiar JA; Wu L; Holesinger TG; Aoki T; Castro RH; Uberuaga BP
    Phys Chem Chem Phys; 2015 Jun; 17(23):15375-85. PubMed ID: 26000664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency.
    Uberuaga BP; Vernon LJ; Martinez E; Voter AF
    Sci Rep; 2015 Mar; 5():9095. PubMed ID: 25766999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study.
    Fotopoulos V; Mora-Fonz D; Kleinbichler M; Bodlos R; Kozeschnik E; Romaner L; Shluger AL
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epifluorescence microscopy study of a quadruple node of triple junctions of grain boundaries in a Eu
    Cordero-Borboa AE; Unda-Angeles R
    J Microsc; 2018 Sep; 271(3):325-336. PubMed ID: 29906304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and structure of grain boundary triple junctions in graphene.
    Hirvonen P; Fan Z; Ervasti MM; Harju A; Elder KR; Ala-Nissila T
    Sci Rep; 2017 Jul; 7(1):4754. PubMed ID: 28684741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.
    Xu J; Liu JB; Li SN; Liu BX; Jiang Y
    Phys Chem Chem Phys; 2016 Jul; 18(27):17930-40. PubMed ID: 27326789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helium in-plane migration behavior on 〈1 0 0〉 symmetric tilt grain boundaries in tungsten.
    Yang Z; Hammond KD
    J Phys Condens Matter; 2018 Aug; 30(32):325002. PubMed ID: 29968585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Strength of Graphene by a Denser Grain Boundary.
    Xu J; Yuan G; Zhu Q; Wang J; Tang S; Gao L
    ACS Nano; 2018 May; 12(5):4529-4535. PubMed ID: 29659251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing nanocrystalline grains in ceramic-oxides.
    Aidhy DS; Zhang Y; Weber WJ
    Phys Chem Chem Phys; 2013 Nov; 15(43):18915-20. PubMed ID: 24091931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step Coalescence by Collective Motion at an Incommensurate Grain Boundary.
    Bowers ML; Ophus C; Gautam A; Lançon F; Dahmen U
    Phys Rev Lett; 2016 Mar; 116(10):106102. PubMed ID: 27015493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disconnection description of triple-junction motion.
    Thomas SL; Wei C; Han J; Xiang Y; Srolovitz DJ
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8756-8765. PubMed ID: 30988185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and stability of He and He-vacancy clusters at a Σ5(310)/[001] grain boundary in bcc Fe from first-principles.
    Zhang L; Zhang Y; Lu GH
    J Phys Condens Matter; 2013 Mar; 25(9):095001. PubMed ID: 23306176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.
    Chen N; Niu LL; Zhang Y; Shu X; Zhou HB; Jin S; Ran G; Lu GH; Gao F
    Sci Rep; 2016 Nov; 6():36955. PubMed ID: 27874047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals.
    Zhou X; Marchand D; McDowell DL; Zhu T; Song J
    Phys Rev Lett; 2016 Feb; 116(7):075502. PubMed ID: 26943544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vacancy creation and annihilation on grain boundary motion.
    McFadden GB; Boettinger WJ; Mishin Y
    Acta Mater; 2020; 185():. PubMed ID: 33281492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic scale verification of oxide-ion vacancy distribution near a single grain boundary in YSZ.
    An J; Park JS; Koh AL; Lee HB; Jung HJ; Schoonman J; Sinclair R; Gür TM; Prinz FB
    Sci Rep; 2013; 3():2680. PubMed ID: 24042150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.