These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 25733054)
1. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes. Sun CN; Zawodzinski TA; Tenhaeff WE; Ren F; Keum JK; Bi S; Li D; Ahn SK; Hong K; Rondinone AJ; Carrillo JM; Do C; Sumpter BG; Chen J Phys Chem Chem Phys; 2015 Mar; 17(12):8266-75. PubMed ID: 25733054 [TBL] [Abstract][Full Text] [Related]
2. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584 [TBL] [Abstract][Full Text] [Related]
3. Enhanced ionic conductivity and mechanical strength in nanocomposite electrolytes with nonlinear polymer architectures. Bakar R; Darvishi S; Şenses E Turk J Chem; 2023; 47(1):242-252. PubMed ID: 37720861 [TBL] [Abstract][Full Text] [Related]
4. Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: the critical role of the segmental mobility. Diddens D; Heuer A J Phys Chem B; 2014 Jan; 118(4):1113-25. PubMed ID: 24383892 [TBL] [Abstract][Full Text] [Related]
5. Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries. Porcarelli L; Sutton P; Bocharova V; Aguirresarobe RH; Zhu H; Goujon N; Leiza JR; Sokolov A; Forsyth M; Mecerreyes D ACS Appl Mater Interfaces; 2021 Nov; 13(45):54354-54362. PubMed ID: 34730327 [TBL] [Abstract][Full Text] [Related]
6. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Wan J; Xie J; Kong X; Liu Z; Liu K; Shi F; Pei A; Chen H; Chen W; Chen J; Zhang X; Zong L; Wang J; Chen LQ; Qin J; Cui Y Nat Nanotechnol; 2019 Jul; 14(7):705-711. PubMed ID: 31133663 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes. Polizos G; Goswami M; Keum JK; He L; Jafta CJ; Sharma J; Wang Y; Kearney LT; Tao R; Li J ACS Nano; 2024 Jan; 18(4):2750-2762. PubMed ID: 38174956 [TBL] [Abstract][Full Text] [Related]
8. Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. Xu Y; Zhang S; Liang T; Yao Z; Wang X; Gu C; Xia X; Tu J ACS Appl Mater Interfaces; 2021 Mar; 13(9):11018-11025. PubMed ID: 33629848 [TBL] [Abstract][Full Text] [Related]
9. Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes. Bakar R; Darvishi S; Aydemir U; Yahsi U; Tav C; Menceloglu YZ; Senses E ACS Appl Energy Mater; 2023 Apr; 6(7):4053-4064. PubMed ID: 37064412 [TBL] [Abstract][Full Text] [Related]
10. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. Seki S; Susan MA; Kaneko T; Tokuda H; Noda A; Watanabe M J Phys Chem B; 2005 Mar; 109(9):3886-92. PubMed ID: 16851440 [TBL] [Abstract][Full Text] [Related]
11. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. Han L; Wang J; Mu X; Wu T; Liao C; Wu N; Xing W; Song L; Kan Y; Hu Y J Colloid Interface Sci; 2021 Mar; 585():596-604. PubMed ID: 33121754 [TBL] [Abstract][Full Text] [Related]
12. High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. Nguyen CA; Xiong S; Ma J; Lu X; Lee PS Phys Chem Chem Phys; 2011 Aug; 13(29):13319-26. PubMed ID: 21706071 [TBL] [Abstract][Full Text] [Related]
13. What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI. Stolwijk NA; Wiencierz M; Heddier C; Kösters J J Phys Chem B; 2012 Mar; 116(10):3065-74. PubMed ID: 22316082 [TBL] [Abstract][Full Text] [Related]
14. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Mor J; Sharma SK Phys Chem Chem Phys; 2024 May; 26(17):13306-13315. PubMed ID: 38639464 [TBL] [Abstract][Full Text] [Related]
15. Synergistic theoretical and experimental study on the ion dynamics of bis(trifluoromethanesulfonyl)imide-based alkali metal salts for solid polymer electrolytes. Fortuin BA; Otegi J; López Del Amo JM; Peña SR; Meabe L; Manzano H; Martínez-Ibañez M; Carrasco J Phys Chem Chem Phys; 2023 Sep; 25(36):25038-25054. PubMed ID: 37698851 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous Improvement of Ionic Conductivity and Mechanical Strength in Block Copolymer Electrolytes with Double Conductive Nanophases. Cao XH; Li JH; Yang MJ; Yang JL; Wang RY; Zhang XH; Xu JT Macromol Rapid Commun; 2020 Apr; 41(7):e1900622. PubMed ID: 32077181 [TBL] [Abstract][Full Text] [Related]
19. Ionic Conductivity and Mechanical Reinforcement of Well-Dispersed Polymer Nanocomposite Electrolytes. Tekell MC; Nikolakakou G; Glynos E; Kumar SK ACS Appl Mater Interfaces; 2023 Jun; 15(25):30756-30768. PubMed ID: 37327494 [TBL] [Abstract][Full Text] [Related]
20. High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. Ma C; Dai K; Hou H; Ji X; Chen L; Ivey DG; Wei W Adv Sci (Weinh); 2018 May; 5(5):1700996. PubMed ID: 29876221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]