These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25733117)

  • 1. Use of unmanned aerial vehicles for medical product transport.
    Thiels CA; Aho JM; Zietlow SP; Jenkins DH
    Air Med J; 2015; 34(2):104-8. PubMed ID: 25733117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts.
    Handford C; Reeves F; Parker P
    J R Army Med Corps; 2018 Aug; 164(4):293-296. PubMed ID: 29523753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.
    Bhatt K; Pourmand A; Sikka N
    Telemed J E Health; 2018 Nov; 24(11):833-838. PubMed ID: 29489441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles.
    Khawaja W; Semkin V; Ratyal NI; Yaqoob Q; Gul J; Guvenc I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unmanned aerial vehicles and pre-hospital emergency medicine.
    Surman K; Lockey D
    Scand J Trauma Resusc Emerg Med; 2024 Jan; 32(1):9. PubMed ID: 38287437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned aerial vehicles in construction and worker safety.
    Howard J; Murashov V; Branche CM
    Am J Ind Med; 2018 Jan; 61(1):3-10. PubMed ID: 29027244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.
    Abrahamsen HB
    BMC Emerg Med; 2015 Jun; 15():12. PubMed ID: 26054527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote Scene Size-up Using an Unmanned Aerial Vehicle in a Simulated Mass Casualty Incident.
    Sibley AK; Jain TN; Butler M; Nicholson B; Sibley D; Smith D; Atkinson P
    Prehosp Emerg Care; 2019; 23(3):332-339. PubMed ID: 30122093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne! UAV delivery of blood products and medical logistics for combat zones.
    Lammers DT; Williams JM; Conner JR; Baird E; Rokayak O; McClellan JM; Bingham JR; Betzold R; Eckert MJ
    Transfusion; 2023 May; 63 Suppl 3():S96-S104. PubMed ID: 36970937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Lateral Safety Spacing for Fusion Operation Based on Unmanned and Manned Aircraft-Event Modeling.
    Zhou C; Huang C; Huang L; Xie C; Zhu X; Huang T
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Drone Technology for Delivery of Medical Supplies During Prolonged Field Care.
    Mesar T; Lessig A; King DR
    J Spec Oper Med; 2018; 18(4):34-35. PubMed ID: 30566722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles.
    Torija AJ; Clark C
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33466937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.
    Hodgson JC; Koh LP
    Curr Biol; 2016 May; 26(10):R404-5. PubMed ID: 27218843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies.
    Robakowska M; Ślęzak D; Żuratyński P; Tyrańska-Fobke A; Robakowski P; Prędkiewicz P; Zorena K
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of delivery by a fixed-wing, sling-launched unmanned aerial vehicle on the hematologic function of whole blood.
    Peltier GC; Meledeo MA
    J Trauma Acute Care Surg; 2023 Aug; 95(2S Suppl 1):S152-S156. PubMed ID: 37246299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electromagnetic interference by neonatal transport equipment on aircraft operation.
    Nish WA; Walsh WF; Land P; Swedenburg M
    Aviat Space Environ Med; 1989 Jun; 60(6):599-600. PubMed ID: 2751593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do unmanned aerial vehicles reduce the duration and costs in transporting sputum samples? A feasibility study conducted in Himachal Pradesh, India.
    Thakur V; Ganeshkumar P; Lakshmanan S; Rubeshkumar P
    Trans R Soc Trop Med Hyg; 2022 Oct; 116(10):971-973. PubMed ID: 35380728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.
    Ditmer MA; Vincent JB; Werden LK; Tanner JC; Laske TG; Iaizzo PA; Garshelis DL; Fieberg JR
    Curr Biol; 2015 Aug; 25(17):2278-83. PubMed ID: 26279232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter.
    Levulis SJ; DeLucia PR; Kim SY
    Hum Factors; 2018 Dec; 60(8):1117-1129. PubMed ID: 30063411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mission control of multiple unmanned aerial vehicles: a workload analysis.
    Dixon SR; Wickens CD; Chang D
    Hum Factors; 2005; 47(3):479-87. PubMed ID: 16435690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.