These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25733153)

  • 1. Distinct kinetics of molecular gelation in a confined space and its relation to the structure and property of thin gel films.
    Liu Y; Zhao WJ; Li JL; Wang RY
    Phys Chem Chem Phys; 2015 Mar; 17(12):8258-65. PubMed ID: 25733153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.
    Wang RY; Wang P; Li JL; Yuan B; Liu Y; Li L; Liu XY
    Phys Chem Chem Phys; 2013 Mar; 15(9):3313-9. PubMed ID: 23361314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation dynamics and gel structure of fibrinogen.
    Kubota K; Kogure H; Masuda Y; Toyama Y; Kita R; Takahashi A; Kaibara M
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):103-9. PubMed ID: 15542309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property.
    Wang R; Liu XY; Xiong J; Li J
    J Phys Chem B; 2006 Apr; 110(14):7275-80. PubMed ID: 16599498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties.
    Huang X; Raghavan SR; Terech P; Weiss RG
    J Am Chem Soc; 2006 Nov; 128(47):15341-52. PubMed ID: 17117887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fractal analysis approach to viscoelasticity of physically cross-linked barley beta-glucan gel networks.
    Kontogiorgos V; Vaikousi H; Lazaridou A; Biliaderis CG
    Colloids Surf B Biointerfaces; 2006 May; 49(2):145-52. PubMed ID: 16621469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization.
    Jørgensen TE; Sletmoen M; Draget KI; Stokke BT
    Biomacromolecules; 2007 Aug; 8(8):2388-97. PubMed ID: 17602585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Morphology and Structure Evolution during Gelation of a Bis(Anhydrazide) Derivative.
    Li W; Che X; Chen F; Zhang C; Zhang T; Wang H; Bai B; Li M
    J Phys Chem B; 2017 Sep; 121(37):8795-8801. PubMed ID: 28846418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation.
    Moschakis T; Lazaridou A; Biliaderis CG
    J Colloid Interface Sci; 2012 Jun; 375(1):50-9. PubMed ID: 22436725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled gelation of poly(3-alkylthiophene)s in bulk and in thin-films using low volatility solvent/poor-solvent mixtures.
    Newbloom GM; de la Iglesia P; Pozzo LD
    Soft Matter; 2014 Nov; 10(44):8945-54. PubMed ID: 25287514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions.
    Ikeda S; Nishinari K; Foegeding EA
    Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static and dynamic properties of supercooled thin polymer films.
    Varnik F; Baschnagel J; Binder K
    Eur Phys J E Soft Matter; 2002 May; 8(2):175-92. PubMed ID: 15010967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of rennet casein gelation at different cooling rates.
    Zhong Q; Daubert CR
    J Colloid Interface Sci; 2004 Nov; 279(1):88-94. PubMed ID: 15380415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology evolution and gelation mechanism of agarose gel.
    Xiong JY; Narayanan J; Liu XY; Chong TK; Chen SB; Chung TS
    J Phys Chem B; 2005 Mar; 109(12):5638-43. PubMed ID: 16851608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture of fiber network: from understanding to engineering of molecular gels.
    Wang RY; Liu XY; Narayanan J; Xiong JY; Li JL
    J Phys Chem B; 2006 Dec; 110(51):25797-802. PubMed ID: 17181223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction.
    Bu H; Kjøniksen AL; Knudsen KD; Nyström B
    Biomacromolecules; 2004; 5(4):1470-9. PubMed ID: 15244467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular hydrogels from bile acid analogues with neutral side chains: network architectures and viscoelastic properties. Junction zones, spherulites, and crystallites: phenomenological aspects of the gel metastability.
    Terech P; Sangeetha NM; Maitra U
    J Phys Chem B; 2006 Aug; 110(31):15224-33. PubMed ID: 16884239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoengineering of a biocompatible organogel by thermal processing.
    Li JL; Wang RY; Liu XY; Pan HH
    J Phys Chem B; 2009 Apr; 113(15):5011-5. PubMed ID: 19309102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels.
    Helgeson ME; Gao Y; Moran SE; Lee J; Godfrin M; Tripathi A; Bose A; Doyle PS
    Soft Matter; 2014 May; 10(17):3122-33. PubMed ID: 24695862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.