These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25733611)

  • 1. Identification and characterization of mutations conferring resistance to D-amino acids in Bacillus subtilis.
    Leiman SA; Richardson C; Foulston L; Elsholz AK; First EA; Losick R
    J Bacteriol; 2015 May; 197(9):1632-9. PubMed ID: 25733611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bacillus subtilis tyrZ gene encodes a highly selective tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch.
    Williams-Wagner RN; Grundy FJ; Raina M; Ibba M; Henkin TM
    J Bacteriol; 2015 May; 197(9):1624-31. PubMed ID: 25733610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.
    Henkin TM; Glass BL; Grundy FJ
    J Bacteriol; 1992 Feb; 174(4):1299-306. PubMed ID: 1735721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells.
    Soutourina J; Plateau P; Blanquet S
    J Biol Chem; 2000 Oct; 275(42):32535-42. PubMed ID: 10918062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis.
    Geraskina NV; Butov IA; Yomantas YA; Stoynova NV
    Microbiol Res; 2015 Feb; 171():90-6. PubMed ID: 25441601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base.
    Grundy FJ; Rollins SM; Henkin TM
    J Bacteriol; 1994 Aug; 176(15):4518-26. PubMed ID: 8045882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of tRNA-mRNA interactions in Bacillus subtilis tyrS antitermination.
    Grundy FJ; Hodil SE; Rollins SM; Henkin TM
    J Bacteriol; 1997 Apr; 179(8):2587-94. PubMed ID: 9098057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.
    Richardson CJ; First EA
    Biochemistry; 2016 Mar; 55(10):1541-53. PubMed ID: 26890980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.
    Leiman SA; May JM; Lebar MD; Kahne D; Kolter R; Losick R
    J Bacteriol; 2013 Dec; 195(23):5391-5. PubMed ID: 24097941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dual Role of the 2'-OH Group of A76 tRNA
    Rybak MY; Kovalenko OP; Tukalo MA
    J Mol Biol; 2018 Aug; 430(17):2670-2676. PubMed ID: 29953888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis.
    Glaser P; Kunst F; Débarbouillé M; Vertès A; Danchin A; Dedonder R
    DNA Seq; 1991; 1(4):251-61. PubMed ID: 1806041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine.
    Hamano-Takaku F; Iwama T; Saito-Yano S; Takaku K; Monden Y; Kitabatake M; Soll D; Nishimura S
    J Biol Chem; 2000 Dec; 275(51):40324-8. PubMed ID: 11006270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cis-acting sequence and structural elements required for antitermination of the Bacillus subtilis tyrS gene.
    Rollins SM; Grundy FJ; Henkin TM
    Mol Microbiol; 1997 Jul; 25(2):411-21. PubMed ID: 9282752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
    Kiga D; Sakamoto K; Kodama K; Kigawa T; Matsuda T; Yabuki T; Shirouzu M; Harada Y; Nakayama H; Takio K; Hasegawa Y; Endo Y; Hirao I; Yokoyama S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9715-20. PubMed ID: 12097643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced amino acid specificity of mammalian tyrosyl-tRNA synthetase is associated with elevated mistranslation of Tyr codons.
    Raina M; Moghal A; Kano A; Jerums M; Schnier PD; Luo S; Deshpande R; Bondarenko PV; Lin H; Ibba M
    J Biol Chem; 2014 Jun; 289(25):17780-90. PubMed ID: 24828507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
    Rauch BJ; Porter JJ; Mehl RA; Perona JJ
    Biochemistry; 2016 Jan; 55(3):618-28. PubMed ID: 26694948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Irnov M; Ibba M
    EMBO J; 2004 Nov; 23(23):4639-48. PubMed ID: 15526031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous tyrosyl-tRNA synthetase assay that regenerates the tRNA substrate.
    Richardson CJ; First EA
    Anal Biochem; 2015 Oct; 486():86-95. PubMed ID: 25998103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redesigning the stereospecificity of tyrosyl-tRNA synthetase.
    Simonson T; Ye-Lehmann S; Palmai Z; Amara N; Wydau-Dematteis S; Bigan E; Druart K; Moch C; Plateau P
    Proteins; 2016 Feb; 84(2):240-53. PubMed ID: 26676967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.