These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25733611)

  • 21. Macromolecular recognition through electrostatic repulsion.
    Bedouelle H; Nageotte R
    EMBO J; 1995 Jun; 14(12):2945-50. PubMed ID: 7796819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein:Ligand binding free energies: A stringent test for computational protein design.
    Druart K; Palmai Z; Omarjee E; Simonson T
    J Comput Chem; 2016 Feb; 37(4):404-15. PubMed ID: 26503829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion.
    Kobayashi T; Sakamoto K; Takimura T; Sekine R; Kelly VP; Kamata K; Nishimura S; Yokoyama S
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1366-71. PubMed ID: 15671170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro selection to identify determinants in tRNA for Bacillus subtilis tyrS T box antiterminator mRNA binding.
    Fauzi H; Jack KD; Hines JV
    Nucleic Acids Res; 2005; 33(8):2595-602. PubMed ID: 15879350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overproduction of tyrosyl-tRNA synthetase is toxic to Escherichia coli: a genetic analysis.
    Bedouelle H; Guez V; Vidal-Cros A; Hermann M
    J Bacteriol; 1990 Jul; 172(7):3940-5. PubMed ID: 2113914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR structure and dynamics of the Specifier Loop domain from the Bacillus subtilis tyrS T box leader RNA.
    Wang J; Henkin TM; Nikonowicz EP
    Nucleic Acids Res; 2010 Jun; 38(10):3388-98. PubMed ID: 20110252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.
    Ryu Y; Schultz PG
    Nat Methods; 2006 Apr; 3(4):263-5. PubMed ID: 16554830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. D-amino acids govern stationary phase cell wall remodeling in bacteria.
    Lam H; Oh DC; Cava F; Takacs CN; Clardy J; de Pedro MA; Waldor MK
    Science; 2009 Sep; 325(5947):1552-5. PubMed ID: 19762646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dominant Intermediate Charcot-Marie-Tooth disorder is not due to a catalytic defect in tyrosyl-tRNA synthetase.
    Froelich CA; First EA
    Biochemistry; 2011 Aug; 50(33):7132-45. PubMed ID: 21732632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved mapping of the tyrS locus in Escherichia coli.
    Diderichsen B; De Hauwer G
    Mol Gen Genet; 1980; 178(3):647-50. PubMed ID: 6993861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering posttranslational proofreading to discriminate nonstandard amino acids.
    Kunjapur AM; Stork DA; Kuru E; Vargas-Rodriguez O; Landon M; Söll D; Church GM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):619-624. PubMed ID: 29301968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix.
    Iwaki J; Endo K; Ichikawa T; Suzuki R; Fujimoto Z; Momma M; Kuno A; Nishimura S; Hasegawa T
    J Biochem; 2012 Dec; 152(6):539-48. PubMed ID: 23024156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-tyrosyl-tRNA(Tyr) metabolism in Saccharomyces cerevisiae.
    Soutourina J; Blanquet S; Plateau P
    J Biol Chem; 2000 Apr; 275(16):11626-30. PubMed ID: 10766779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alteration of tyrosine isoaccepting transfer ribonucleic acid species in wild-type and asporogenous strains of Bacillus subtilis.
    McMillian RA; Arceneaux JL
    J Bacteriol; 1975 May; 122(2):526-31. PubMed ID: 805123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human D-Tyr-tRNA(Tyr) deacylase contributes to the resistance of the cell to D-amino acids.
    Zheng G; Liu W; Gong Y; Yang H; Yin B; Zhu J; Xie Y; Peng X; Qiang B; Yuan J
    Biochem J; 2009 Jan; 417(1):85-94. PubMed ID: 18700836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria.
    Grundy FJ; Henkin TM
    J Mol Biol; 1994 Jan; 235(2):798-804. PubMed ID: 8289305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine.
    Zhang D; Vaidehi N; Goddard WA; Danzer JF; Debe D
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6579-84. PubMed ID: 12011422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.
    Supekova L; Zambaldo C; Choi S; Lim R; Luo X; Kazane SA; Young TS; Schultz PG
    Bioorg Med Chem Lett; 2018 May; 28(9):1570-1573. PubMed ID: 29625824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: changes in chromatography of transfer ribonucleic acids associated with stage of development.
    Vold BS
    J Bacteriol; 1973 Apr; 114(1):178-82. PubMed ID: 4633341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.