These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 25733640)
1. Effect of initiating enteral protein feeding on whole-body protein turnover in critically ill patients. Liebau F; Wernerman J; van Loon LJ; Rooyackers O Am J Clin Nutr; 2015 Mar; 101(3):549-57. PubMed ID: 25733640 [TBL] [Abstract][Full Text] [Related]
2. Whole-body protein kinetics in critically ill patients during 50 or 100% energy provision by enteral nutrition: A randomized cross-over study. Sundström Rehal M; Liebau F; Wernerman J; Rooyackers O PLoS One; 2020; 15(10):e0240045. PubMed ID: 33017434 [TBL] [Abstract][Full Text] [Related]
3. Feeding the critically ill obese patient: a systematic review protocol. Secombe P; Harley S; Chapman M; Aromataris E JBI Database System Rev Implement Rep; 2015 Oct; 13(10):95-109. PubMed ID: 26571286 [TBL] [Abstract][Full Text] [Related]
4. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children - A stable isotope tracer study. de Betue CTI; Garcia Casal XC; van Waardenburg DA; Schexnayder SM; Joosten KFM; Deutz NEP; Engelen MPKJ Clin Nutr; 2017 Jun; 36(3):876-887. PubMed ID: 28089618 [TBL] [Abstract][Full Text] [Related]
5. Whole body protein kinetics during hypocaloric and normocaloric feeding in critically ill patients. Berg A; Rooyackers O; Bellander BM; Wernerman J Crit Care; 2013 Jul; 17(4):R158. PubMed ID: 23883571 [TBL] [Abstract][Full Text] [Related]
6. A supplemental intravenous amino acid infusion sustains a positive protein balance for 24 hours in critically ill patients. Sundström Rehal M; Liebau F; Tjäder I; Norberg Å; Rooyackers O; Wernerman J Crit Care; 2017 Dec; 21(1):298. PubMed ID: 29212550 [TBL] [Abstract][Full Text] [Related]
7. Short-term amino acid infusion improves protein balance in critically ill patients. Liebau F; Sundström M; van Loon LJ; Wernerman J; Rooyackers O Crit Care; 2015 Mar; 19(1):106. PubMed ID: 25882298 [TBL] [Abstract][Full Text] [Related]
9. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. de Betue CT; van Waardenburg DA; Deutz NE; van Eijk HM; van Goudoever JB; Luiking YC; Zimmermann LJ; Joosten KF Arch Dis Child; 2011 Sep; 96(9):817-22. PubMed ID: 21673183 [TBL] [Abstract][Full Text] [Related]
10. Uptake of dietary amino acids into arterial blood during continuous enteral feeding in critically ill patients and healthy subjects. Liebau F; Király E; Olsson D; Wernerman J; Rooyackers O Clin Nutr; 2021 Mar; 40(3):912-918. PubMed ID: 32709553 [TBL] [Abstract][Full Text] [Related]
11. Hypocaloric vs Normocaloric Nutrition in Critically Ill Patients: A Prospective Randomized Pilot Trial. Petros S; Horbach M; Seidel F; Weidhase L JPEN J Parenter Enteral Nutr; 2016 Feb; 40(2):242-9. PubMed ID: 24699555 [TBL] [Abstract][Full Text] [Related]
12. [Experience with early enteral nutrition application in critically ill patients in medical intensive care unit]. Charvát J; Kratochvíl J; Martínková V; Masopust J; Pálová S Cas Lek Cesk; 2008; 147(2):106-11. PubMed ID: 18383962 [TBL] [Abstract][Full Text] [Related]
13. Severity of illness influences the efficacy of enteral feeding route on clinical outcomes in patients with critical illness. Huang HH; Chang SJ; Hsu CW; Chang TM; Kang SP; Liu MY J Acad Nutr Diet; 2012 Aug; 112(8):1138-46. PubMed ID: 22682883 [TBL] [Abstract][Full Text] [Related]
14. Metabolic effects of enteral versus parenteral alanyl-glutamine dipeptide administration in critically ill patients receiving enteral feeding: a pilot study. Luo M; Bazargan N; Griffith DP; Estívariz CF; Leader LM; Easley KA; Daignault NM; Hao L; Meddings JB; Galloway JR; Blumberg JB; Jones DP; Ziegler TR Clin Nutr; 2008 Apr; 27(2):297-306. PubMed ID: 18258342 [TBL] [Abstract][Full Text] [Related]
15. Early hypocaloric enteral nutritional supplementation in acute organophosphate poisoning--a prospective randomized trial. Moses V; Mahendri NV; John G; Peter JV; Ganesh A Clin Toxicol (Phila); 2009 May; 47(5):419-24. PubMed ID: 19492933 [TBL] [Abstract][Full Text] [Related]
17. Permissive Underfeeding or Standard Enteral Feeding in High- and Low-Nutritional-Risk Critically Ill Adults. Post Hoc Analysis of the PermiT Trial. Arabi YM; Aldawood AS; Al-Dorzi HM; Tamim HM; Haddad SH; Jones G; McIntyre L; Solaiman O; Sakkijha MH; Sadat M; Mundekkadan S; Kumar A; Bagshaw SM; Mehta S; Am J Respir Crit Care Med; 2017 Mar; 195(5):652-662. PubMed ID: 27589411 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the effect of three different protein content enteral diets on serum levels of proteins, nitrogen balance, and energy expenditure in critically ill infants: study protocol for a randomized controlled trial. Fernández R; Urbano J; Carrillo Á; Vivanco A; Solana MJ; Rey C; López-Herce J Trials; 2019 Oct; 20(1):585. PubMed ID: 31604481 [TBL] [Abstract][Full Text] [Related]
19. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Carr AC; Rosengrave PC; Bayer S; Chambers S; Mehrtens J; Shaw GM Crit Care; 2017 Dec; 21(1):300. PubMed ID: 29228951 [TBL] [Abstract][Full Text] [Related]
20. Intermittent vs. continuous enteral feeding to prevent catabolism in acutely ill adult and pediatric patients. Di Girolamo FG; Situlin R; Fiotti N; Biolo G Curr Opin Clin Nutr Metab Care; 2017 Sep; 20(5):390-395. PubMed ID: 28650855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]