These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25733687)

  • 21. ISWI chromatin remodeling: one primary actor or a coordinated effort?
    Bartholomew B
    Curr Opin Struct Biol; 2014 Feb; 24():150-5. PubMed ID: 24561830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains.
    Hota SK; Bhardwaj SK; Deindl S; Lin YC; Zhuang X; Bartholomew B
    Nat Struct Mol Biol; 2013 Feb; 20(2):222-9. PubMed ID: 23334290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a.
    Richmond TJ
    Biochem Soc Trans; 2012 Apr; 40(2):347-50. PubMed ID: 22435810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing.
    Oberbeckmann E; Niebauer V; Watanabe S; Farnung L; Moldt M; Schmid A; Cramer P; Peterson CL; Eustermann S; Hopfner KP; Korber P
    Nat Commun; 2021 May; 12(1):3232. PubMed ID: 34050140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies.
    Zentner GE; Tsukiyama T; Henikoff S
    PLoS Genet; 2013; 9(2):e1003317. PubMed ID: 23468649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer.
    Qiu Y; Levendosky RF; Chakravarthy S; Patel A; Bowman GD; Myong S
    Mol Cell; 2017 Oct; 68(1):76-88.e6. PubMed ID: 28943314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism.
    Fazzio TG; Tsukiyama T
    Mol Cell; 2003 Nov; 12(5):1333-40. PubMed ID: 14636590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state.
    Nodelman IM; Das S; Faustino AM; Fried SD; Bowman GD; Armache JP
    Nat Struct Mol Biol; 2022 Feb; 29(2):121-129. PubMed ID: 35173352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains.
    Ryan DP; Sundaramoorthy R; Martin D; Singh V; Owen-Hughes T
    EMBO J; 2011 May; 30(13):2596-609. PubMed ID: 21623345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination.
    Ocampo J; Chereji RV; Eriksson PR; Clark DJ
    Genome Res; 2019 Mar; 29(3):407-417. PubMed ID: 30683752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome.
    Chittori S; Hong J; Bai Y; Subramaniam S
    Nucleic Acids Res; 2019 Sep; 47(17):9400-9409. PubMed ID: 31402386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps.
    Deindl S; Hwang WL; Hota SK; Blosser TR; Prasad P; Bartholomew B; Zhuang X
    Cell; 2013 Jan; 152(3):442-52. PubMed ID: 23374341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA.
    Sharma A; Jenkins KR; Héroux A; Bowman GD
    J Biol Chem; 2011 Dec; 286(49):42099-42104. PubMed ID: 22033927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae.
    Zhang Z; Reese JC
    EMBO J; 2004 Jun; 23(11):2246-57. PubMed ID: 15116071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
    Kagalwala MN; Glaus BJ; Dang W; Zofall M; Bartholomew B
    EMBO J; 2004 May; 23(10):2092-104. PubMed ID: 15131696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI.
    Sala A; Toto M; Pinello L; Gabriele A; Di Benedetto V; Ingrassia AM; Lo Bosco G; Di Gesù V; Giancarlo R; Corona DF
    EMBO J; 2011 May; 30(9):1766-77. PubMed ID: 21448136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes.
    Stockdale C; Flaus A; Ferreira H; Owen-Hughes T
    J Biol Chem; 2006 Jun; 281(24):16279-88. PubMed ID: 16606615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution.
    Eriksson PR; Clark DJ
    Sci Rep; 2021 Feb; 11(1):4195. PubMed ID: 33602956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
    Clapier CR; Nightingale KP; Becker PB
    Nucleic Acids Res; 2002 Feb; 30(3):649-55. PubMed ID: 11809876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleosome Positioning and Spacing: From Mechanism to Function.
    Singh AK; Mueller-Planitz F
    J Mol Biol; 2021 Mar; 433(6):166847. PubMed ID: 33539878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.