BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 25733873)

  • 1. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.
    Ku C; Nelson-Sathi S; Roettger M; Garg S; Hazkani-Covo E; Martin WF
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10139-46. PubMed ID: 25733873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosymbiotic origin and differential loss of eukaryotic genes.
    Ku C; Nelson-Sathi S; Roettger M; Sousa FL; Lockhart PJ; Bryant D; Hazkani-Covo E; McInerney JO; Landan G; Martin WF
    Nature; 2015 Aug; 524(7566):427-32. PubMed ID: 26287458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Too Much Eukaryote LGT.
    Martin WF
    Bioessays; 2017 Dec; 39(12):. PubMed ID: 29068466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endosymbiotic theories for eukaryote origin.
    Martin WF; Garg S; Zimorski V
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1678):20140330. PubMed ID: 26323761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.
    Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW
    Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas.
    Moustafa A; Bhattacharya D
    BMC Evol Biol; 2008 Jan; 8():6. PubMed ID: 18194581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication.
    Kapust N; Nelson-Sathi S; Schönfeld B; Hazkani-Covo E; Bryant D; Lockhart PJ; Röttger M; Xavier JC; Martin WF
    Genome Biol Evol; 2018 Apr; 10(5):1198-1209. PubMed ID: 29718211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.
    Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer.
    Bock R
    Annu Rev Genet; 2017 Nov; 51():1-22. PubMed ID: 28846455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids.
    Gross J; Meurer J; Bhattacharya D
    BMC Evol Biol; 2008 Apr; 8():117. PubMed ID: 18433492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal and endosymbiotic gene transfer in early plastid evolution.
    Ponce-Toledo RI; López-García P; Moreira D
    New Phytol; 2019 Oct; 224(2):618-624. PubMed ID: 31135958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology, anaerobes, and the origin of mitosing cells 50 years on.
    Martin WF
    J Theor Biol; 2017 Dec; 434():2-10. PubMed ID: 28087421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The endosymbiotic origin, diversification and fate of plastids.
    Keeling PJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX).
    Atteia A; van Lis R; van Hellemond JJ; Tielens AG; Martin W; Henze K
    Gene; 2004 Apr; 330():143-8. PubMed ID: 15087133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic perspectives on the birth and spread of plastids.
    Archibald JM
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10147-53. PubMed ID: 25902528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.
    Garg SG; Martin WF
    Genome Biol Evol; 2016 Jul; 8(6):1950-70. PubMed ID: 27345956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.