BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25734406)

  • 1. Transurethral light delivery for prostate photoacoustic imaging.
    Lediju Bell MA; Guo X; Song DY; Boctor EM
    J Biomed Opt; 2015 Mar; 20(3):036002. PubMed ID: 25734406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging.
    Lediju Bell MA; Kuo NP; Song DY; Kang JU; Boctor EM
    J Biomed Opt; 2014 Dec; 19(12):126011. PubMed ID: 25531797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds.
    Lediju Bell MA; Kuo N; Song DY; Boctor EM
    Biomed Opt Express; 2013; 4(10):1964-77. PubMed ID: 24156057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system.
    Kuo N; Kang HJ; Song DY; Kang JU; Boctor EM
    J Biomed Opt; 2012 Jun; 17(6):066005. PubMed ID: 22734761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration.
    Singh N; Chérin E; Roa CF; Soenjaya Y; Wodlinger B; Zheng G; Wilson BC; Foster FS; Demore CEM
    Ultrasound Med Biol; 2024 Apr; 50(4):457-466. PubMed ID: 38238200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: a pilot ex vivo study.
    Mehrmohammadi M; Alizad A; Kinnick RR; Davis BJ; Fatemi M
    Med Phys; 2014 Sep; 41(9):092902. PubMed ID: 25186418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Fabrication of a Miniaturized Convex Array for Combined Ultrasound and Photoacoustic Imaging of the Prostate.
    Jang J; Chang JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2086-2096. PubMed ID: 30106721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle.
    Singh MK; Parameshwarappa V; Hendriksen E; Steenbergen W; Manohar S
    J Biomed Opt; 2016 Dec; 21(12):120501. PubMed ID: 27924348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of brachytherapy seeds using 3D ultrasound.
    Wen X; Salcudean SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():855-8. PubMed ID: 19162791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BrachyView: Combining LDR seed positions with transrectal ultrasound imaging in a prostate gel phantom.
    Alnaghy S; Cutajar DL; Bucci JA; Enari K; Safavi-Naeini M; Favoino M; Tartaglia M; Carriero F; Jakubek J; Pospisil S; Lerch M; Rosenfeld AB; Petasecca M
    Phys Med; 2017 Feb; 34():55-64. PubMed ID: 28118951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging.
    Hsieh BY; Chen SL; Ling T; Guo LJ; Li PC
    Opt Express; 2012 Jan; 20(2):1588-96. PubMed ID: 22274501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations and human cadaver head studies to identify optimal acoustic receiver locations for minimally invasive photoacoustic-guided neurosurgery.
    Graham MT; Huang J; Creighton FX; Lediju Bell MA
    Photoacoustics; 2020 Sep; 19():100183. PubMed ID: 32695578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EM-enhanced US-based seed detection for prostate brachytherapy.
    Dehghan E; Bharat S; Kung C; Bonillas A; Beaulieu L; Pouliot J; Kruecker J
    Med Phys; 2018 Jun; 45(6):2357-2368. PubMed ID: 29604086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of brachytherapy seeds using 3-D transrectal ultrasound.
    Wen X; Salcudean ST; Lawrence PD
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2467-77. PubMed ID: 20595088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape analysis of the prostate: establishing imaging specifications for the design of a transurethral imaging device for prostate brachytherapy guidance.
    Holmes DR; Davis BJ; Goulet CC; Wilson TM; Mynderse LA; Furutani KM; Camp JJ; Robb RA
    Brachytherapy; 2014; 13(5):465-70. PubMed ID: 24962657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Characteristics of Photoacoustic Imaging Probes with Varying Frequencies and Light-delivery Schemes.
    Rich LJ; Chamberlain SR; Falcone DR; Bruce R; Heinmiller A; Xia J; Seshadri M
    Ultrason Imaging; 2019 Nov; 41(6):319-335. PubMed ID: 31570083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.
    Paul S; Mulani S; Singh MKA; Singh MS
    Med Phys; 2023 Dec; 50(12):7525-7538. PubMed ID: 37843980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic tomography for imaging the prostate: a transurethral illumination probe design and application.
    Ai M; Youn JI; Salcudean SE; Rohling R; Abolmaesumi P; Tang S
    Biomed Opt Express; 2019 May; 10(5):2588-2605. PubMed ID: 31143504
    [No Abstract]   [Full Text] [Related]  

  • 20. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy.
    Harrison T; Zemp RJ
    J Biomed Opt; 2011 Aug; 16(8):080502. PubMed ID: 21895302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.