BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 25734492)

  • 1. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.
    Begalle RL; Walsh MC; McGrath ML; Boling MC; Blackburn JT; Padua DA
    J Appl Biomech; 2015 Aug; 31(4):205-10. PubMed ID: 25734492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weightbearing ankle dorsiflexion range of motion and sagittal plane kinematics during single leg drop jump landing in healthy male athletes.
    Dowling B; Mcpherson AL; Paci JM
    J Sports Med Phys Fitness; 2018 Jun; 58(6):867-874. PubMed ID: 28639442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2011 Oct; 18(5):323-8. PubMed ID: 20638850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.
    Hoch MC; Farwell KE; Gaven SL; Weinhandl JT
    J Athl Train; 2015 Aug; 50(8):833-9. PubMed ID: 26067428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle-dorsiflexion range of motion and landing biomechanics.
    Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA
    J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights.
    Howe LP; Bampouras TM; North J; Waldron M
    Hum Mov Sci; 2019 Apr; 64():320-328. PubMed ID: 30836206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.
    Lee J; Song Y; Shin CS
    Gait Posture; 2018 May; 62():99-104. PubMed ID: 29544157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-flight trunk flexion and extension altered segment and lower extremity joint movements and subsequent landing mechanics.
    Davis DJ; Hinshaw TJ; Critchley ML; Dai B
    J Sci Med Sport; 2019 Aug; 22(8):955-961. PubMed ID: 30902539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-plane, multi-joint lower extremity support moments during a rapid deceleration task: Implications for knee loading.
    Podraza JT; White SC; Ramsey DK
    Hum Mov Sci; 2018 Apr; 58():155-164. PubMed ID: 29448160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    Scand J Med Sci Sports; 2019 Aug; 29(8):1130-1140. PubMed ID: 31050053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle Dorsiflexion displacement is associated with hip and knee kinematics in females following anterior cruciate ligament reconstruction.
    Stanley LE; Harkey M; Luc-Harkey B; Frank BS; Pietrosimone B; Blackburn JT; Padua DA
    Res Sports Med; 2019; 27(1):21-33. PubMed ID: 30084269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two- and Three-Dimensional Relationships Between Knee and Hip Kinematic Motion Analysis: Single-Leg Drop-Jump Landings.
    Sorenson B; Kernozek TW; Willson JD; Ragan R; Hove J
    J Sport Rehabil; 2015 Nov; 24(4):363-72. PubMed ID: 25658442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Professional Dancers Distinct Biomechanical Pattern during Multidirectional Landings.
    Azevedo AM; Oliveira R; Vaz JR; Cortes N
    Med Sci Sports Exerc; 2019 Mar; 51(3):539-547. PubMed ID: 30363007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restrictions in Ankle Dorsiflexion Range of Motion Alter Landing Kinematics But Not Movement Strategy When Fatigued.
    Howe L; S North J; Waldron M; Bampouras TM
    J Sport Rehabil; 2021 Feb; 30(6):911-919. PubMed ID: 33571960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of pre-contact joint kinematics and vertical impulse between vertical jump landings and step-off landings from equal heights.
    Harry JR; Freedman Silvernail J; Mercer JA; Dufek JS
    Hum Mov Sci; 2017 Dec; 56(Pt B):88-97. PubMed ID: 29107821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.