BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25734539)

  • 21. Carbohydrate-aromatic interface and molecular architecture of lignocellulose.
    Kirui A; Zhao W; Deligey F; Yang H; Kang X; Mentink-Vigier F; Wang T
    Nat Commun; 2022 Jan; 13(1):538. PubMed ID: 35087039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates.
    Goacher RE; Selig MJ; Master ER
    Curr Opin Biotechnol; 2014 Jun; 27():123-33. PubMed ID: 24525082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Bio-Based Epoxy Thermoset Polymers from Depolymerized Native Lignins Produced at the Pilot Scale.
    Feghali E; van de Pas DJ; Torr KM
    Biomacromolecules; 2020 Apr; 21(4):1548-1559. PubMed ID: 32186381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.
    Zhao S; Abu-Omar MM
    Biomacromolecules; 2015 Jul; 16(7):2025-31. PubMed ID: 26135389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin.
    Feghali E; van de Pas DJ; Parrott AJ; Torr KM
    ACS Macro Lett; 2020 Aug; 9(8):1155-1160. PubMed ID: 35653206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
    Pingali SV; Urban VS; Heller WT; McGaughey J; O'Neill H; Foston M; Myles DA; Ragauskas A; Evans BR
    Biomacromolecules; 2010 Sep; 11(9):2329-35. PubMed ID: 20726544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods.
    Jin Z; Katsumata KS; Lam TB; Iiyama K
    Biopolymers; 2006 Oct; 83(2):103-10. PubMed ID: 16673388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars.
    Harvey OR; Herbert BE; Kuo LJ; Louchouarn P
    Environ Sci Technol; 2012 Oct; 46(19):10641-50. PubMed ID: 22950676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant cell wall polymers as precursors for biofuels.
    Pauly M; Keegstra K
    Curr Opin Plant Biol; 2010 Jun; 13(3):305-12. PubMed ID: 20097119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and properties of novel bio-based epoxy resin thermosets from lignin oligomers and cardanol.
    Liu G; Jin C; Huo S; Kong Z; Chu F
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1400-1408. PubMed ID: 34740690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties.
    Gioia C; Colonna M; Tagami A; Medina L; Sevastyanova O; Berglund LA; Lawoko M
    Biomacromolecules; 2020 May; 21(5):1920-1928. PubMed ID: 32160463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into the structural organization of the plant polymer lignin.
    Radotić K; Micić M; Jeremić M
    Ann N Y Acad Sci; 2005 Jun; 1048():215-29. PubMed ID: 16154935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double-Interpenetrating-Network Lignin-based Epoxy Resin Adhesives for Resistance to Extreme Environment.
    Wang W; Li Y; Zhang H; Chen T; Sun G; Han Y; Li J
    Biomacromolecules; 2022 Mar; 23(3):779-788. PubMed ID: 35238555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass.
    Podgorbunskikh EM; Bychkov AL; Ryabchikova EI; Lomovsky OI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Zhang W; Yi Z; Huang J; Li F; Hao B; Li M; Hong S; Lv Y; Sun W; Ragauskas A; Hu F; Peng J; Peng L
    Bioresour Technol; 2013 Feb; 130():30-7. PubMed ID: 23298647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels.
    Achyuthan KE; Achyuthan AM; Adams PD; Dirk SM; Harper JC; Simmons BA; Singh AK
    Molecules; 2010 Nov; 15(12):8641-88. PubMed ID: 21116223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.
    Li X; Clarke K; Li K; Chen A
    Biotechnol Prog; 2012; 28(6):1389-99. PubMed ID: 22887935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.
    Ng F; Couture G; Philippe C; Boutevin B; Caillol S
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.