These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25734539)

  • 41. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.
    Stöcker M
    Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low molecular weight and highly functional RCF lignin products as a full bisphenol a replacer in bio-based epoxy resins.
    Van Aelst K; Van Sinay E; Vangeel T; Zhang Y; Renders T; Van den Bosch S; Van Aelst J; Sels BF
    Chem Commun (Camb); 2021 Jun; 57(46):5642-5645. PubMed ID: 33972957
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic effect of lignin and ethylene glycol crosslinked epoxy resin on enhancing thermal, mechanical and shape memory performance.
    Li J; Zhang Z; Zhang Y; Sun F; Wang D; Wang H; Jin Z
    Int J Biol Macromol; 2021 Dec; 192():516-524. PubMed ID: 34653437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films.
    Oinonen P; Areskogh D; Henriksson G
    Carbohydr Polym; 2013 Jun; 95(2):690-6. PubMed ID: 23648031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current achievements in the mechanically pretreated conversion of plant biomass.
    Bychkov A; Podgorbunskikh E; Bychkova E; Lomovsky O
    Biotechnol Bioeng; 2019 May; 116(5):1231-1244. PubMed ID: 30659596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of Biobased Nonisocyanate Polyurethane/Epoxy Thermoset Materials Using Depolymerized Native Lignin.
    Quinsaat JEQ; Feghali E; van de Pas DJ; Vendamme R; Torr KM
    Biomacromolecules; 2022 Nov; 23(11):4562-4573. PubMed ID: 36224101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility.
    Jin S; Zhang G; Zhang P; Fan S; Li F
    Bioresour Technol; 2015 Apr; 181():270-4. PubMed ID: 25661305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of Fatty acids.
    Pan X; Sengupta P; Webster DC
    Biomacromolecules; 2011 Jun; 12(6):2416-28. PubMed ID: 21561167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Application of FTIR Microspectroscopy in the Study of Lignocellulosic Cell Walls].
    Ding DY; Zhou X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3393-6. PubMed ID: 26964216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.
    Li M; Feng S; Wu L; Li Y; Fan C; Zhang R; Zou W; Tu Y; Jing HC; Li S; Peng L
    Bioresour Technol; 2014 Sep; 167():14-23. PubMed ID: 24968107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel lignin-containing high-performance adhesive for extreme environment.
    Zhang H; Chen T; Li Y; Han Y; Sun Y; Sun G
    Int J Biol Macromol; 2020 Dec; 164():1832-1839. PubMed ID: 32758609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compositional analysis of lignocellulosic biomass: conventional methodologies and future outlook.
    Krasznai DJ; Champagne Hartley R; Roy HM; Champagne P; Cunningham MF
    Crit Rev Biotechnol; 2018 Mar; 38(2):199-217. PubMed ID: 28595468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid determination of lignin content via direct dissolution and ¹H NMR analysis of plant cell walls.
    Jiang N; Pu Y; Ragauskas AJ
    ChemSusChem; 2010 Nov; 3(11):1285-9. PubMed ID: 20886593
    [No Abstract]   [Full Text] [Related]  

  • 58. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass.
    Pasangulapati V; Ramachandriya KD; Kumar A; Wilkins MR; Jones CL; Huhnke RL
    Bioresour Technol; 2012 Jun; 114():663-9. PubMed ID: 22520219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions.
    Hoeger IC; Filpponen I; Martin-Sampedro R; Johansson LS; Osterberg M; Laine J; Kelley S; Rojas OJ
    Biomacromolecules; 2012 Oct; 13(10):3228-40. PubMed ID: 22954385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength.
    Silveira RL; Stoyanov SR; Gusarov S; Skaf MS; Kovalenko A
    J Am Chem Soc; 2013 Dec; 135(51):19048-51. PubMed ID: 24274712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.