These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25734641)

  • 1. Recognizing complex upper extremity activities using body worn sensors.
    Lemmens RJ; Janssen-Potten YJ; Timmermans AA; Smeets RJ; Seelen HA
    PLoS One; 2015; 10(3):e0118642. PubMed ID: 25734641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The variable relationship between arm and hand use: a rationale for using finger magnetometry to complement wrist accelerometry when measuring daily use of the upper extremity.
    Rowe JB; Friedman N; Chan V; Cramer SC; Bachman M; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4087-90. PubMed ID: 25570890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To What Extent Can Arm-Hand Skill Performance--of Both Healthy Adults and Children-Be Recorded Reliably Using Multiple Bodily Worn Sensor Devices?
    Lemmens RJ; Seelen HA; Timmermans AA; Schnackers ML; Eerden A; Smeets RJ; Janssen-Potten YJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):581-90. PubMed ID: 25675460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist.
    Biswas D; Corda D; Baldus G; Cranny A; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Physiol Meas; 2014 Sep; 35(9):1751-68. PubMed ID: 25119720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-World Functional Grasping Activity in Individuals With Stroke and Healthy Controls Using a Novel Wearable Wrist Sensor.
    Yang CL; Liu J; Simpson LA; Menon C; Eng JJ
    Neurorehabil Neural Repair; 2021 Oct; 35(10):929-937. PubMed ID: 34510935
    [No Abstract]   [Full Text] [Related]  

  • 8. Assessment of daily-life reaching performance after stroke.
    van Meulen FB; Reenalda J; Buurke JH; Veltink PH
    Ann Biomed Eng; 2015 Feb; 43(2):478-86. PubMed ID: 25449150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting.
    Lee SI; Liu X; Rajan S; Ramasarma N; Choe EK; Bonato P
    PLoS One; 2019; 14(3):e0212484. PubMed ID: 30893308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability of accelerometry as an objective measure for upper extremity use in stroke patients.
    Heye AL; Kersting C; Kneer M; Barzel A
    BMC Neurol; 2022 Jun; 22(1):220. PubMed ID: 35705906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Accelerometers for Measuring Upper-Extremity Physical Activity.
    Lawinger E; Uhl TL; Abel M; Kamineni S
    J Sport Rehabil; 2015 Aug; 24(3):236-43. PubMed ID: 25803521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task selection and enriched environments: a functional upper extremity training program for stroke survivors.
    Davis JZ
    Top Stroke Rehabil; 2006; 13(3):1-11. PubMed ID: 16987787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of mental practice combined with modified constraint-induced therapy on corticospinal excitability, movement quality, function, and activities of daily living in persons with stroke.
    Kim H; Yoo EY; Jung MY; Kim J; Park JH; Kang DH
    Disabil Rehabil; 2018 Oct; 40(20):2449-2457. PubMed ID: 28597693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors.
    Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S
    Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.
    Bochniewicz EM; Emmer G; McLeod A; Barth J; Dromerick AW; Lum P
    J Stroke Cerebrovasc Dis; 2017 Dec; 26(12):2880-2887. PubMed ID: 28781056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Body Movements Increase Arm Use Outcomes of Wrist-Worn Accelerometers in Stroke Patients.
    Regterschot GRH; Selles RW; Ribbers GM; Bussmann JBJ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter.
    Uswatte G; Miltner WH; Foo B; Varma M; Moran S; Taub E
    Stroke; 2000 Mar; 31(3):662-7. PubMed ID: 10700501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers.
    Lang CE; Waddell KJ; Klaesner JW; Bland MD
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28518079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper-extremity stroke therapy task discrimination using motion sensors and electromyography.
    Giuffrida JP; Lerner A; Steiner R; Daly J
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):82-90. PubMed ID: 18303809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tri-axial accelerometer analysis techniques for evaluating functional use of the extremities.
    Hurd WJ; Morrow MM; Kaufman KR
    J Electromyogr Kinesiol; 2013 Aug; 23(4):924-9. PubMed ID: 23642841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.