These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 25734649)

  • 1. A wind energy powered wireless temperature sensor node.
    Zhang C; He XF; Li SY; Cheng YQ; Rao Y
    Sensors (Basel); 2015 Feb; 15(3):5020-31. PubMed ID: 25734649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Triboelectric-Electromagnetic-Piezoelectric Wind Energy Harvester toward Wide-Scale IoT Self-Powered Sensing.
    Tian S; Lai L; Xin J; Qu Z; Li B; Dai Y
    Small; 2024 May; 20(20):e2307282. PubMed ID: 38009784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications.
    Fang Y; Tang T; Li Y; Hou C; Wen F; Yang Z; Chen T; Sun L; Liu H; Lee C
    iScience; 2021 Apr; 24(4):102300. PubMed ID: 33870124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection.
    Wu W; Pan Z; Zhou J; Wang Y; Ma J; Li J; Hu Y; Wen J; Wang X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Implementation of an Event-Driven Smart Sensor Node for Wireless Monitoring Systems.
    Liu C; Yang J; Lu Z; Chen C; Wang J; Xu D; Li X
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester.
    Kang JG; Kim H; Shin S; Kim BS
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Sun Y; Du X; Liu F
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research and Development of a Wireless Self-Powered Sensing Device Based on Bridge Vibration Energy Collection.
    Tong X; Hou Y; Dong Y; Zhang Y; Yang H; Qian Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptivity of a leaf-inspired wind energy harvester with respect to wind speed and direction.
    Sabzpoushan S; Woias P
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38701828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Efficient Energy Collection of an Autoregulatory Driving Arm Harvester in a Breeze Environment.
    Zhang C; Yang X; Zhang B; Fan K; Liu Z; Liu Z
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and study of an eccentric wheel drive-based rotating piezoelectric energy harvester.
    Liu X; Wang H; Lv X; Zhang L; He L
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37916917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ultrahigh Power Density and Ultralow Wear GaN-Based Tribovoltaic Nanogenerator for Sliding Ball Bearing as Self-Powered Wireless Sensor Node.
    Zhang Z; Wu N; Gong L; Luan R; Cao J; Zhang C
    Adv Mater; 2024 Feb; 36(6):e2310098. PubMed ID: 38035636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Sea of Internet of Things: Wind Energy Harvesting System for Unmanned Surface Vehicles.
    Cao H; Tang H; Zhang Z; Kong L; Tang M; Du X; Mutsuda H; Tairab AM
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28694-28708. PubMed ID: 38768307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation.
    Chong PL; Singh AK; Kok SL
    PLoS One; 2019; 14(12):e0227153. PubMed ID: 31881078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State Evaluation of Self-Powered Wireless Sensors Based on a Fuzzy Comprehensive Evaluation Model.
    Xiong S; Li Q; Yang A; Zhu L; Li P; Xue K; Yang J
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Design and Ground Test Verification of an Energy-Efficient Wireless System for the Fatigue Monitoring of Wind Turbine Blades Based on Bistable Piezoelectric Energy Harvesting.
    Plagianakos T; Chrysochoidis N; Bolanakis G; Leventakis N; Margelis N; Sotiropoulos M; Giannopoulos F; Kardarakos GC; Spandonidis C; Papadopoulos E; Saravanos D
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind Energy Harvesting with Vertically Aligned Piezoelectric Inverted Flags.
    Yang K; Cioncolini A; Revell A; Nabawy MRA
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the Impact of Data Compression on the Energy Consumption Required for Data Transmission in a Microcontroller-Based System.
    Piątkowski D; Puślecki T; Walkowiak K
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wind-Induced Vibration Monitoring of High-Mast Illumination Poles Using Wireless Smart Sensors.
    Shaheen M; Li J; Bennett C; Collins W
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676123
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Sensors Editorial Office
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764242
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.