BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 25734685)

  • 21. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R; Lu Y; Fang X; Wang S
    J Chem Inf Comput Sci; 2004; 44(6):2114-25. PubMed ID: 15554682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes.
    Zhang C; Liu S; Zhu Q; Zhou Y
    J Med Chem; 2005 Apr; 48(7):2325-35. PubMed ID: 15801826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bootstrap-based consensus scoring method for protein-ligand docking.
    Fukunishi H; Teramoto R; Takada T; Shimada J
    J Chem Inf Model; 2008 May; 48(5):988-96. PubMed ID: 18426197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks.
    Hassan-Harrirou H; Zhang C; Lemmin T
    J Chem Inf Model; 2020 Jun; 60(6):2791-2802. PubMed ID: 32392050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting protein-ligand binding affinities: a low scoring game?
    Marsden PM; Puvanendrampillai D; Mitchell JB; Glen RC
    Org Biomol Chem; 2004 Nov; 2(22):3267-73. PubMed ID: 15534704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes.
    Zilian D; Sotriffer CA
    J Chem Inf Model; 2013 Aug; 53(8):1923-33. PubMed ID: 23705795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions.
    Zhang X; Shen C; Guo X; Wang Z; Weng G; Ye Q; Wang G; He Q; Yang B; Cao D; Hou T
    J Cheminform; 2021 Feb; 13(1):6. PubMed ID: 33541407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier.
    Ding Y; Tang J; Guo F
    J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2014 Aug; 15(1):291. PubMed ID: 25159129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction.
    Li J; Guan X; Zhang O; Sun K; Wang Y; Bagni D; Head-Gordon T
    ArXiv; 2024 May; ():. PubMed ID: 37645037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial basis function neural network ensemble for predicting protein-protein interaction sites in heterocomplexes.
    Wang B; Chen P; Wang P; Zhao G; Zhang X
    Protein Pept Lett; 2010 Sep; 17(9):1111-6. PubMed ID: 20509853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ensemble-based approach to estimate confidence of predicted protein-ligand binding affinity values.
    Rayka M; Mirzaei M; Mohammad Latifi A
    Mol Inform; 2024 Apr; 43(4):e202300292. PubMed ID: 38358080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.