These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 25734685)

  • 41. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
    Ballester PJ; Schreyer A; Blundell TL
    J Chem Inf Model; 2014 Mar; 54(3):944-55. PubMed ID: 24528282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network.
    Nazet J; Lang E; Merkl R
    PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction.
    Li H; Peng J; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Biomolecules; 2018 Mar; 8(1):. PubMed ID: 29538331
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scoring functions for prediction of protein-ligand interactions.
    Wang JC; Lin JH
    Curr Pharm Des; 2013; 19(12):2174-82. PubMed ID: 23016847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.
    Liu X; Liu J; Zhu T; Zhang L; He X; Zhang JZ
    J Chem Inf Model; 2016 May; 56(5):854-61. PubMed ID: 27088302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction.
    Li G; Yuan Y; Zhang R
    Comput Biol Chem; 2023 Dec; 107():107972. PubMed ID: 37883905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying protein-kinase-specific phosphorylation sites based on the Bagging-AdaBoost ensemble approach.
    Yu Z; Deng Z; Wong HS; Tan L
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):132-43. PubMed ID: 20215087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. XLPFE: A Simple and Effective Machine Learning Scoring Function for Protein-Ligand Scoring and Ranking.
    Dong L; Qu X; Wang B
    ACS Omega; 2022 Jun; 7(25):21727-21735. PubMed ID: 35785279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HotLig: a molecular surface-directed approach to scoring protein-ligand interactions.
    Wang SH; Wu YT; Kuo SC; Yu J
    J Chem Inf Model; 2013 Aug; 53(8):2181-95. PubMed ID: 23862697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy.
    Dias R; Kolazckowski B
    Proteins; 2015 Nov; 83(11):2100-14. PubMed ID: 26370248
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method.
    Soni A; Bhat R; Jayaram B
    J Comput Aided Mol Des; 2020 Aug; 34(8):817-830. PubMed ID: 32185583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative assessment of scoring functions on a diverse test set.
    Cheng T; Li X; Li Y; Liu Z; Wang R
    J Chem Inf Model; 2009 Apr; 49(4):1079-93. PubMed ID: 19358517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-docking benchmark for automated pose and ranking prediction of ligand binding.
    Wierbowski SD; Wingert BM; Zheng J; Camacho CJ
    Protein Sci; 2020 Jan; 29(1):298-305. PubMed ID: 31721338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.