These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 25734685)

  • 81. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect.
    Yan Z; Wang J
    Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Assessing How Residual Errors of Scoring Functions Correlate to Ligand Structural Features.
    Shulga DA; Shaimardanov AR; Ivanov NN; Palyulin VA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499344
    [TBL] [Abstract][Full Text] [Related]  

  • 84. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Performance of machine learning methods for ligand-based virtual screening.
    Plewczynski D; Spieser SA; Koch U
    Comb Chem High Throughput Screen; 2009 May; 12(4):358-68. PubMed ID: 19442065
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A comparison of decision tree ensemble creation techniques.
    Banfield RE; Hall LO; Bowyer KW; Kegelmeyer WP
    IEEE Trans Pattern Anal Mach Intell; 2007 Jan; 29(1):173-80. PubMed ID: 17108393
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions.
    Zheng M; Xiong B; Luo C; Li S; Liu X; Shen Q; Li J; Zhu W; Luo X; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2994-3004. PubMed ID: 21999432
    [TBL] [Abstract][Full Text] [Related]  

  • 88. LigScore: a novel scoring function for predicting binding affinities.
    Krammer A; Kirchhoff PD; Jiang X; Venkatachalam CM; Waldman M
    J Mol Graph Model; 2005 Apr; 23(5):395-407. PubMed ID: 15781182
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction.
    Cheng T; Liu Z; Wang R
    BMC Bioinformatics; 2010 Apr; 11():193. PubMed ID: 20398404
    [TBL] [Abstract][Full Text] [Related]  

  • 92. AutoBind: automatic extraction of protein-ligand-binding affinity data from biological literature.
    Chang DT; Ke CH; Lin JH; Chiang JH
    Bioinformatics; 2012 Aug; 28(16):2162-8. PubMed ID: 22753780
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Consensus scoring criteria for improving enrichment in virtual screening.
    Yang JM; Chen YF; Shen TW; Kristal BS; Hsu DF
    J Chem Inf Model; 2005; 45(4):1134-46. PubMed ID: 16045308
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 96. PMF scoring revisited.
    Muegge I
    J Med Chem; 2006 Oct; 49(20):5895-902. PubMed ID: 17004705
    [TBL] [Abstract][Full Text] [Related]  

  • 97. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 98. MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein-Protein Docking Conformations.
    Jung Y; Geng C; Bonvin AMJJ; Xue LC; Honavar VG
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671507
    [TBL] [Abstract][Full Text] [Related]  

  • 99. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone.
    Chen P; Huang JZ; Gao X
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S4. PubMed ID: 25474163
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark.
    Kastritis PL; Bonvin AM
    J Proteome Res; 2010 May; 9(5):2216-25. PubMed ID: 20329755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.