These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25734826)

  • 1. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.
    Ying L; O'Connor F; Stolz JF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(5):511-5. PubMed ID: 25734826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.
    Nelson AW; Eitrheim ES; Knight AW; May D; Mehrhoff MA; Shannon R; Litman R; Burnett WC; Forbes TZ; Schultz MK
    Environ Health Perspect; 2015 Jul; 123(7):689-96. PubMed ID: 25831257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).
    Rich AL; Crosby EC
    New Solut; 2013; 23(1):117-35. PubMed ID: 23552651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE CONTENT OF NATURAL RADIONUCLIDES IN TECHNOLOGICAL RESIDUES OF UKRAINIAN INDUSTRIES.
    Pavlenko T; Aksenov N; Fryziuk M
    Probl Radiac Med Radiobiol; 2019 Dec; 24():121-130. PubMed ID: 31841462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of enhanced radium isotopes in oil production wastes in Turkey.
    Parmaksız A; Ağuş Y; Bulgurlu F; Bulur E; Öncü T; Özkök YÖ
    J Environ Radioact; 2015 Mar; 141():82-9. PubMed ID: 25562751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes.
    Thakur P; Ward AL; Schaub TM
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43058-43071. PubMed ID: 35091928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of radiological impacts of tenorm in the Tunisian petroleum industry.
    Hrichi H; Baccouche S; Belgaied JE
    J Environ Radioact; 2013 Jan; 115():107-13. PubMed ID: 22902311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-attenuation corrections for radium measurements of oil and gas solids by gamma spectroscopy.
    Ajemigbitse MA; Cheng Y; Cannon FS; Warner NR
    J Environ Radioact; 2020 Jan; 211():106070. PubMed ID: 31585380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid method to determine
    Ajemigbitse MA; Cannon FS; Warner NR
    J Environ Radioact; 2020 Sep; 220-221():106300. PubMed ID: 32560888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum.
    Muminov IT; Muhamedov AK; Osmanov BS; Safarov AA; Safarov AN
    J Environ Radioact; 2005; 84(3):321-31. PubMed ID: 16009470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology.
    Jia G; Jia J
    J Environ Radioact; 2012 Apr; 106():98-119. PubMed ID: 22245211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The analytical methods for radium in environmental samples (author's transl)].
    Higuchi H
    Radioisotopes; 1981 Nov; 30(11):618-27. PubMed ID: 7038778
    [No Abstract]   [Full Text] [Related]  

  • 13. Possibilities of the use of CeBr3 scintillation detectors for the measurement of the content of radionuclides in samples for environmental monitoring.
    Idoeta R; Herranz M; Alegría N; Legarda F
    Appl Radiat Isot; 2021 Oct; 176():109881. PubMed ID: 34343747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive determination of 224Ra, 226Ra and 228Ra concentrations in drinking water by gamma spectroscopy.
    Parekh P; Haines D; Bari A; Torres M
    Health Phys; 2003 Nov; 85(5):613-20. PubMed ID: 14571995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.
    Khandaker MU; Jojo PJ; Kassim HA; Amin YM
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):33-7. PubMed ID: 22887119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.
    Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B
    Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent determination of 224Ra, 226Ra, 228Ra, and unsupported 212Pb in a single analysis for drinking water and wastewater: dissolved and suspended fractions.
    Parsa B; Obed RN; Nemeth WK; Suozzo G
    Health Phys; 2004 Feb; 86(2):145-9. PubMed ID: 14744047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radioactivity and dose assessment of marble samples from Igbeti mines, Nigeria.
    Ademola AK; Hammed OS; Adejumobi CA
    Radiat Prot Dosimetry; 2008; 132(1):94-7. PubMed ID: 18940820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of radiological hazards of naturally occurring radioactive materials in cement industry.
    Aslam M; Gul R; Ara T; Hussain M
    Radiat Prot Dosimetry; 2012 Sep; 151(3):483-8. PubMed ID: 22355168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radium needle used to calibrate germanium gamma-ray detector.
    Kamboj S; Lovett D; Kahn B; Walker D
    Health Phys; 1993 Mar; 64(3):300-5. PubMed ID: 8432648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.