These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25734892)

  • 1. Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal.
    Oh A; Baik H; Choi DS; Cheon JY; Kim B; Kim H; Kwon SJ; Joo SH; Jung Y; Lee K
    ACS Nano; 2015 Mar; 9(3):2856-67. PubMed ID: 25734892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes.
    Wang S; Xiong L; Bi J; Zhang X; Yang G; Yang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27009-27018. PubMed ID: 30040371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts.
    Niu Z; Becknell N; Yu Y; Kim D; Chen C; Kornienko N; Somorjai GA; Yang P
    Nat Mater; 2016 Nov; 15(11):1188-1194. PubMed ID: 27525570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction.
    Oh A; Sa YJ; Hwang H; Baik H; Kim J; Kim B; Joo SH; Lee K
    Nanoscale; 2016 Sep; 8(36):16379-16386. PubMed ID: 27714051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.
    Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y
    ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability.
    Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P
    Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts.
    Becknell N; Son Y; Kim D; Li D; Yu Y; Niu Z; Lei T; Sneed BT; More KL; Markovic NM; Stamenkovic VR; Yang P
    J Am Chem Soc; 2017 Aug; 139(34):11678-11681. PubMed ID: 28787139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst.
    Dionigi F; Weber CC; Primbs M; Gocyla M; Bonastre AM; Spöri C; Schmies H; Hornberger E; Kühl S; Drnec J; Heggen M; Sharman J; Dunin-Borkowski RE; Strasser P
    Nano Lett; 2019 Oct; 19(10):6876-6885. PubMed ID: 31510752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Evolution of Sub-10 nm Octahedral Platinum-Nickel Bimetallic Nanocrystals.
    Chang Q; Xu Y; Duan Z; Xiao F; Fu F; Hong Y; Kim J; Choi SI; Su D; Shao M
    Nano Lett; 2017 Jun; 17(6):3926-3931. PubMed ID: 28493711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.
    Becknell N; Kang Y; Chen C; Resasco J; Kornienko N; Guo J; Markovic NM; Somorjai GA; Stamenkovic VR; Yang P
    J Am Chem Soc; 2015 Dec; 137(50):15817-24. PubMed ID: 26652294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles.
    Ahmadi M; Cui C; Mistry H; Strasser P; Cuenya BR
    ACS Nano; 2015 Nov; 9(11):10686-94. PubMed ID: 26418831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendrite-Embedded Platinum-Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction.
    Kwon H; Kabiraz MK; Park J; Oh A; Baik H; Choi SI; Lee K
    Nano Lett; 2018 May; 18(5):2930-2936. PubMed ID: 29634282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.