These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
580 related articles for article (PubMed ID: 25735292)
1. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning. Tsukihara M; Noto Y; Sasamoto R; Hayakawa T; Saito M Med Phys; 2015 Mar; 42(3):1378-88. PubMed ID: 25735292 [TBL] [Abstract][Full Text] [Related]
2. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Saito M Med Phys; 2012 Apr; 39(4):2021-30. PubMed ID: 22482623 [TBL] [Abstract][Full Text] [Related]
3. Proton dose calculation based on converting dual-energy CT data to stopping power ratio (DEEDZ-SPR): a beam-hardening assessment. Tanaka S; Noto Y; Utsunomiya S; Yoshimura T; Matsuura T; Saito M Phys Med Biol; 2020 Dec; 65(23):235046. PubMed ID: 33336651 [TBL] [Abstract][Full Text] [Related]
4. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials. Saito M; Tsukihara M Med Phys; 2014 Jul; 41(7):071701. PubMed ID: 24989370 [TBL] [Abstract][Full Text] [Related]
5. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner. Tsukihara M; Noto Y; Hayakawa T; Saito M Phys Med Biol; 2013 May; 58(9):N135-44. PubMed ID: 23571116 [TBL] [Abstract][Full Text] [Related]
6. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging. Saito M Med Phys; 2015 Jul; 42(7):4088-93. PubMed ID: 26133609 [TBL] [Abstract][Full Text] [Related]
8. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning. Wu V; Podgorsak MB; Tran TA; Malhotra HK; Wang IZ Med Phys; 2011 Jul; 38(7):4451-63. PubMed ID: 21859046 [TBL] [Abstract][Full Text] [Related]
9. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: correction of cupping artifacts and conversion of CT numbers to electron density. Petit SF; van Elmpt WJ; Nijsten SM; Lambin P; Dekker AL Med Phys; 2008 Mar; 35(3):849-65. PubMed ID: 18404922 [TBL] [Abstract][Full Text] [Related]
10. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Krauss B; Grant KL; Schmidt BT; Flohr TG Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305 [TBL] [Abstract][Full Text] [Related]
11. Characteristics and clinical application of a treatment simulator with Ct-option. Verellen D; Vinh-Hung V; Bijdekerke P; Nijs F; Linthout N; Bel A; Storme G Radiother Oncol; 1999 Mar; 50(3):355-66. PubMed ID: 10392823 [TBL] [Abstract][Full Text] [Related]
12. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments. Held M; Cremers F; Sneed PK; Braunstein S; Fogh SE; Nakamura J; Barani I; Perez-Andujar A; Pouliot J; Morin O J Appl Clin Med Phys; 2016 Mar; 17(2):279-290. PubMed ID: 27074487 [TBL] [Abstract][Full Text] [Related]
13. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung. Disher B; Hajdok G; Wang A; Craig J; Gaede S; Battista JJ Phys Med Biol; 2013 Jun; 58(12):4157-74. PubMed ID: 23689060 [TBL] [Abstract][Full Text] [Related]
14. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning. Zhu J; Penfold SN Med Phys; 2016 Jun; 43(6):2845-2854. PubMed ID: 27277033 [TBL] [Abstract][Full Text] [Related]
15. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Bazalova M; Carrier JF; Beaulieu L; Verhaegen F Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124 [TBL] [Abstract][Full Text] [Related]
16. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Saito M Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360 [TBL] [Abstract][Full Text] [Related]
17. An electron density calibration phantom for CT-based treatment planning computers. Constantinou C; Harrington JC; DeWerd LA Med Phys; 1992; 19(2):325-7. PubMed ID: 1584125 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of on-board imager cone beam CT hounsfield units for treatment planning using rigid image registration. Rafic M; Ravindran P J Cancer Res Ther; 2015; 11(4):690-6. PubMed ID: 26881503 [TBL] [Abstract][Full Text] [Related]
19. An evaluation of an energy independent CT reconstruction algorithm for use in radiotherapy treatment planning. Tulip R; Manolopoulos S; Richmond N; Walker C Br J Radiol; 2023 Dec; 96(1152):20230004. PubMed ID: 37751165 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the impact of extended field-of-view CT reconstructions on CT values and dosimetric accuracy for radiation therapy. Cheung JP; Shugard E; Mistry N; Pouliot J; Chen J Med Phys; 2019 Feb; 46(2):892-901. PubMed ID: 30457170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]