BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 25735295)

  • 1. Monitoring local heating around an interventional MRI antenna with RF radiometry.
    Ertürk MA; El-Sharkawy AM; Bottomley PA
    Med Phys; 2015 Mar; 42(3):1411-23. PubMed ID: 25735295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband Self-Grounded Bow-Tie Antenna for Thermal MR.
    Eigentler TW; Winter L; Han H; Oberacker E; Kuehne A; Waiczies H; Schmitter S; Boehmert L; Prinz C; Trefna HD; Niendorf T
    NMR Biomed; 2020 May; 33(5):e4274. PubMed ID: 32078208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.
    Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R
    Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High peak and high average radiofrequency power transmit/receive switch for thermal magnetic resonance.
    Ji Y; Hoffmann W; Pham M; Dunn AE; Han H; Özerdem C; Waiczies H; Rohloff M; Endemann B; Boyer C; Lim M; Niendorf T; Winter L
    Magn Reson Med; 2018 Nov; 80(5):2246-2255. PubMed ID: 29607551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Green's function approach to local rf heating in interventional MRI.
    Yeung CJ; Atalar E
    Med Phys; 2001 May; 28(5):826-32. PubMed ID: 11393478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating.
    Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA
    Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.
    El-Sharkawy AM; Sotiriadis PP; Bottomley PA; Atalar E
    IEEE Trans Circuits Syst I Regul Pap; 2006 Nov; 53(11):2396-2404. PubMed ID: 18026562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T.
    Yildirim DK; Bruce C; Uzun D; Rogers T; O'Brien K; Ramasawmy R; Campbell-Washburn A; Herzka DA; Lederman RJ; Kocaturk O
    Magn Reson Med; 2021 Sep; 86(3):1786-1801. PubMed ID: 33860962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safely assessing radiofrequency heating potential of conductive devices using image-based current measurements.
    Griffin GH; Anderson KJ; Celik H; Wright GA
    Magn Reson Med; 2015 Jan; 73(1):427-41. PubMed ID: 24452789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil.
    Fagan AJ; Jacobs PS; Hulshizer TC; Rossman PJ; Frick MA; Amrami KK; Felmlee JP
    Med Phys; 2021 Feb; 48(2):781-790. PubMed ID: 33294999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wire-based sternal closure: MRI-related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study.
    Zheng J; Xia M; Kainz W; Chen J
    Magn Reson Med; 2020 Mar; 83(3):1055-1065. PubMed ID: 31468593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An RF dosimeter for independent SAR measurement in MRI scanners.
    Qian D; El-Sharkawy AM; Bottomley PA; Edelstein WA
    Med Phys; 2013 Dec; 40(12):122303. PubMed ID: 24320534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of radio-frequency heating of a parallel transmit coil in a phantom using multi-echo proton resonance frequency shift thermometry.
    Jeong H; Restivo MC; Jezzard P; Hess AT
    Magn Reson Imaging; 2021 Apr; 77():57-68. PubMed ID: 33359425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of coil dimensions and field polarization on RF heating inside a head phantom.
    Kangarlu A; Ibrahim TS; Shellock FG
    Magn Reson Imaging; 2005 Jan; 23(1):53-60. PubMed ID: 15733788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the detectability of vesicoureteral reflux using microwave radiometry.
    Arunachalam K; Maccarini PF; De Luca V; Bardati F; Snow BW; Stauffer PR
    Phys Med Biol; 2010 Sep; 55(18):5417-35. PubMed ID: 20736499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.
    Yuan Y; Wyatt C; Maccarini P; Stauffer P; Craciunescu O; Macfall J; Dewhirst M; Das SK
    Phys Med Biol; 2012 Apr; 57(7):2021-37. PubMed ID: 22430012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.