These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25735487)

  • 21. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.
    Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K
    J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variable electronic properties of lateral phosphorene-graphene heterostructures.
    Tian X; Liu L; Du Y; Gu J; Xu JB; Yakobson BI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31685-92. PubMed ID: 26554700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass transport mechanism of cu species at the metal/dielectric interfaces with a graphene barrier.
    Zhao Y; Liu Z; Sun T; Zhang L; Jie W; Wang X; Xie Y; Tsang YH; Long H; Chai Y
    ACS Nano; 2014 Dec; 8(12):12601-11. PubMed ID: 25423484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetothermoelectric transport in modulated and unmodulated graphene.
    Nasir R; Sabeeh K
    J Phys Condens Matter; 2011 Sep; 23(37):375301. PubMed ID: 21881170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-plane conductance through a graphene/molecular monolayer/Au sandwich.
    Li B; Famili M; Pensa E; Grace I; Long NJ; Lambert C; Albrecht T; Cohen LF
    Nanoscale; 2018 Nov; 10(42):19791-19798. PubMed ID: 30328885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unusual magnetotransport properties in graphene fibers.
    Sagar RUR; Lifang C; Ali A; Khan MF; Abbas M; Malik MI; Khan K; Zeng J; Anwar T; Liang T
    Phys Chem Chem Phys; 2020 Nov; 22(44):25712-25719. PubMed ID: 33146207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Work function modulation and thermal stability of reduced graphene oxide gate electrodes in MOS devices.
    Misra A; Kalita H; Kottantharayil A
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):786-94. PubMed ID: 24341793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor.
    Moulick S; Alam R; Pal AN
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional hybrid systems based on large-area high-quality graphene.
    Coraux J; Marty L; Bendiab N; Bouchiat V
    Acc Chem Res; 2013 Oct; 46(10):2193-201. PubMed ID: 23194105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetoresistance and charge transport in graphene governed by nitrogen dopants.
    Rein M; Richter N; Parvez K; Feng X; Sachdev H; Kläui M; Müllen K
    ACS Nano; 2015 Feb; 9(2):1360-6. PubMed ID: 25548883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of work function of graphene under a metal electrode and its role in contact resistance.
    Song SM; Park JK; Sul OJ; Cho BJ
    Nano Lett; 2012 Aug; 12(8):3887-92. PubMed ID: 22775270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Santandrea S; Romeo F; Citro R; Schroeder T; Lupina G
    Nanotechnology; 2011 Jul; 22(27):275702. PubMed ID: 21597135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effectively modulating vertical tunneling transport by mechanically twisting bilayer graphene within the all-metallic architecture.
    Chen X; Wu T; Zhuang W
    Nanoscale; 2020 Apr; 12(16):8793-8800. PubMed ID: 32270154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gate tunable nonlinear rectification effects in three-terminal graphene nanojunctions.
    Zhu RJ; Huang YQ; Kang N; Xu HQ
    Nanoscale; 2014 May; 6(9):4527-31. PubMed ID: 24658185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hysteresis of electronic transport in graphene transistors.
    Wang H; Wu Y; Cong C; Shang J; Yu T
    ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior Magnetoresistance Performance of Hybrid Graphene Foam/Metal Sulfide Nanocrystal Devices.
    Zeb MH; Shabbir B; Sagar RUR; Mahmood N; Chen K; Qasim I; Malik MI; Yu W; Hossain MM; Dai Z; Ou Q; Bhat MA; Shivananju BN; Li Y; Tang X; Qi K; Younis A; Khan Q; Zhang Y; Bao Q
    ACS Appl Mater Interfaces; 2019 May; 11(21):19397-19403. PubMed ID: 31026141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance evaluation of electro-optic effect based graphene transistors.
    Gupta G; Jalil MB; Yu B; Liang G
    Nanoscale; 2012 Oct; 4(20):6365-73. PubMed ID: 22948474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.