These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25735540)

  • 1. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells.
    Shibata M; Uchihashi T; Ando T; Yasuda R
    Sci Rep; 2015 Mar; 5():8724. PubMed ID: 25735540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed atomic force microscopy imaging of live mammalian cells.
    Shibata M; Watanabe H; Uchihashi T; Ando T; Yasuda R
    Biophys Physicobiol; 2017; 14():127-135. PubMed ID: 28900590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells.
    Colom A; Casuso I; Rico F; Scheuring S
    Nat Commun; 2013; 4():2155. PubMed ID: 23857417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy.
    Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K
    Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale.
    Katan AJ; Dekker C
    Cell; 2011 Nov; 147(5):979-82. PubMed ID: 22118456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and localization of single molecular recognition events using atomic force microscopy.
    Hinterdorfer P; Dufrêne YF
    Nat Methods; 2006 May; 3(5):347-55. PubMed ID: 16628204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy as nanorobot.
    Xi N; Fung CK; Yang R; Lai KW; Wang DH; Seiffert-Sinha K; Sinha AA; Li G; Liu L
    Methods Mol Biol; 2011; 736():485-503. PubMed ID: 21660745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision.
    Baumann F; Heucke SF; Pippig DA; Gaub HE
    Rev Sci Instrum; 2015 Mar; 86(3):035109. PubMed ID: 25832277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long polymeric tips of atomic force microscopy for large biological samples.
    Muramatsu H; Yamamoto Y; Sato A; Enomoto S; Kim WS; Chang SM; Kim JM
    J Microsc; 2006 Nov; 224(Pt 2):146-51. PubMed ID: 17204061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: High-speed Z tip scanner with screw cantilever holding mechanism for atomic-resolution atomic force microscopy in liquid.
    Akrami SM; Miyata K; Asakawa H; Fukuma T
    Rev Sci Instrum; 2014 Dec; 85(12):126106. PubMed ID: 25554342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications.
    D'Agostino DP; McNally HA; Dean JB
    J Microsc; 2012 May; 246(2):129-42. PubMed ID: 22455392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device.
    Iwata F; Ohashi Y; Ishisaki I; Picco LM; Ushiki T
    Ultramicroscopy; 2013 Oct; 133():88-94. PubMed ID: 23933597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy.
    Fantner GE; Barbero RJ; Gray DS; Belcher AM
    Nat Nanotechnol; 2010 Apr; 5(4):280-5. PubMed ID: 20228787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined scanning probe and total internal reflection fluorescence microscopy.
    Oreopoulos J; Yip CM
    Methods; 2008 Sep; 46(1):2-10. PubMed ID: 18602010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy.
    Li M; Liu LQ; Xi N; Wang YC
    Acta Pharmacol Sin; 2015 Jul; 36(7):769-82. PubMed ID: 26027658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional extension of high-speed AFM for wider biological applications.
    Uchihashi T; Watanabe H; Fukuda S; Shibata M; Ando T
    Ultramicroscopy; 2016 Jan; 160():182-196. PubMed ID: 26521164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy.
    Grzywa EL; Lee AC; Lee GU; Suter DM
    J Neurobiol; 2006 Dec; 66(14):1529-43. PubMed ID: 17058186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.