BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25735772)

  • 1. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.
    Madeira F; Tinti M; Murugesan G; Berrett E; Stafford M; Toth R; Cole C; MacKintosh C; Barton GJ
    Bioinformatics; 2015 Jul; 31(14):2276-83. PubMed ID: 25735772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome.
    Tinti M; Madeira F; Murugesan G; Hoxhaj G; Toth R; Mackintosh C
    Database (Oxford); 2014; 2014():bat085. PubMed ID: 24501395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.
    Li Z; Tang J; Guo F
    PLoS One; 2016; 11(2):e0147467. PubMed ID: 26828594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs.
    Obenauer JC; Cantley LC; Yaffe MB
    Nucleic Acids Res; 2003 Jul; 31(13):3635-41. PubMed ID: 12824383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.
    Kwon OK; Sim J; Kim SJ; Sung E; Kim JY; Jeong TC; Lee S
    J Proteome Res; 2015 Dec; 14(12):5215-24. PubMed ID: 26487105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the phosphoproteome of mature Arabidopsis pollen.
    Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U
    Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Novel Physiological Substrates of
    Nakedi KC; Calder B; Banerjee M; Giddey A; Nel AJM; Garnett S; Blackburn JM; Soares NC
    Mol Cell Proteomics; 2018 Jul; 17(7):1365-1377. PubMed ID: 29549130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMFPh: a maximal motif finder for phosphoproteomics datasets.
    Wang T; Kettenbach AN; Gerber SA; Bailey-Kellogg C
    Bioinformatics; 2012 Jun; 28(12):1562-70. PubMed ID: 22531218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase,
    Goel RK; Paczkowska M; Reimand J; Napper S; Lukong KE
    Mol Cell Proteomics; 2018 May; 17(5):925-947. PubMed ID: 29496907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PhoPepMass: A database and search tool assisting human phosphorylation peptide identification from mass spectrometry data.
    Zhang M; Cui H; Chen L; Yu Y; Glocker MO; Xie L
    J Genet Genomics; 2018 Jul; 45(7):381-388. PubMed ID: 30055873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motif-specific sampling of phosphoproteomes.
    Ruse CI; McClatchy DB; Lu B; Cociorva D; Motoyama A; Park SK; Yates JR
    J Proteome Res; 2008 May; 7(5):2140-50. PubMed ID: 18452278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences.
    Murakami Y; Spriggs RV; Nakamura H; Jones S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W412-6. PubMed ID: 20507911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling.
    Wojcechowskyj JA; Lee JY; Seeholzer SH; Doms RW
    PLoS One; 2011; 6(9):e24918. PubMed ID: 21949786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites.
    Gnad F; Ren S; Cox J; Olsen JV; Macek B; Oroshi M; Mann M
    Genome Biol; 2007; 8(11):R250. PubMed ID: 18039369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein function annotation from sequence: prediction of residues interacting with RNA.
    Spriggs RV; Murakami Y; Nakamura H; Jones S
    Bioinformatics; 2009 Jun; 25(12):1492-7. PubMed ID: 19389733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement of phosphopeptides and proteins via stable isotope labeling in Arabidopsis and functional phosphoproteomic strategies.
    Li N
    Methods Mol Biol; 2012; 876():17-32. PubMed ID: 22576083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation, functional clustering and structural characterization of βTrCP1 substrates through a molecular dynamics study.
    Shafique S; Younis S; Niaz H; Rashid S
    Mol Biosyst; 2016 Jun; 12(7):2233-46. PubMed ID: 27156994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.