BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25735772)

  • 21. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Proteome and Phosphoproteome Analyses of
    Rioseras B; Shliaha PV; Gorshkov V; Yagüe P; López-García MT; Gonzalez-Quiñonez N; Kovalchuk S; Rogowska-Wrzesinska A; Jensen ON; Manteca A
    Mol Cell Proteomics; 2018 Aug; 17(8):1591-1611. PubMed ID: 29784711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains.
    Roque AC; Lowe CR
    Biotechnol Bioeng; 2005 Sep; 91(5):546-55. PubMed ID: 15959902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Rare Palmitoylation Events in Proteins.
    Kumari B; Kumar R; Kumar M
    J Comput Biol; 2018 Sep; 25(9):997-1008. PubMed ID: 29963911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides.
    Lee DG; Kwon J; Eom CY; Kang YM; Roh SW; Lee KB; Choi JS
    J Microbiol; 2015 Apr; 53(4):279-87. PubMed ID: 25845541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom.
    Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F
    J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA.
    Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT
    J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.
    Lv DW; Li X; Zhang M; Gu AQ; Zhen SM; Wang C; Li XH; Yan YM
    BMC Genomics; 2014 May; 15(1):375. PubMed ID: 24885693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative label-free phosphoproteomics of six different life stages of the late blight pathogen Phytophthora infestans reveals abundant phosphorylation of members of the CRN effector family.
    Resjö S; Ali A; Meijer HJ; Seidl MF; Snel B; Sandin M; Levander F; Govers F; Andreasson E
    J Proteome Res; 2014 Apr; 13(4):1848-59. PubMed ID: 24588563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3.
    Chan PM; Ng YW; Manser E
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.005157. PubMed ID: 21189416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism.
    Dunn J; Ferluga S; Sharma V; Futschik M; Hilton DA; Adams CL; Lasonder E; Hanemann CO
    EBioMedicine; 2019 Feb; 40():77-91. PubMed ID: 30594554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.
    Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X
    Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions.
    Rampitsch C; Tinker NA; Subramaniam R; Barkow-Oesterreicher S; Laczko E
    Proteomics; 2012 Apr; 12(7):1002-5. PubMed ID: 22522806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants.
    Krystkowiak I; Manguy J; Davey NE
    Nucleic Acids Res; 2018 Jul; 46(W1):W235-W241. PubMed ID: 29873773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.