BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25735772)

  • 41. Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation.
    Luerman GC; Powell DW; Uriarte SM; Cummins TD; Merchant ML; Ward RA; McLeish KR
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.001552. PubMed ID: 21097543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays.
    Tinti M; Panni S; Cesareni G
    Methods Mol Biol; 2017; 1518():177-193. PubMed ID: 27873207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.
    Nguyen TT; Le NQ; Kusuma RMI; Ou YY
    J Mol Graph Model; 2019 Nov; 92():86-93. PubMed ID: 31344547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoproteomics using iTRAQ.
    Jones AM; Nühse TS
    Methods Mol Biol; 2011; 779():287-302. PubMed ID: 21837574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fertility-GRU: Identifying Fertility-Related Proteins by Incorporating Deep-Gated Recurrent Units and Original Position-Specific Scoring Matrix Profiles.
    Le NQK
    J Proteome Res; 2019 Sep; 18(9):3503-3511. PubMed ID: 31362508
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.
    Rusin SF; Schlosser KA; Adamo ME; Kettenbach AN
    Sci Signal; 2015 Oct; 8(398):rs12. PubMed ID: 26462736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells.
    Rinschen MM; Yu MJ; Wang G; Boja ES; Hoffert JD; Pisitkun T; Knepper MA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3882-7. PubMed ID: 20139300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MOWGLI: prediction of protein-MannOse interacting residues With ensemble classifiers usinG evoLutionary Information.
    Pai PP; Mondal S
    J Biomol Struct Dyn; 2016 Oct; 34(10):2069-83. PubMed ID: 26457920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved prediction of protein-protein binding sites using a support vector machines approach.
    Bradford JR; Westhead DR
    Bioinformatics; 2005 Apr; 21(8):1487-94. PubMed ID: 15613384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble.
    Yu DJ; Hu J; Yan H; Yang XB; Yang JY; Shen HB
    BMC Bioinformatics; 2014 Sep; 15(1):297. PubMed ID: 25189131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interrogating the hidden phosphoproteome.
    Kang UB; Alexander WM; Marto JA
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 28165663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A study on the effect of synthetic α-to-β
    Andrei SA; Thijssen V; Brunsveld L; Ottmann C; Milroy LG
    Chem Commun (Camb); 2019 Dec; 55(98):14809-14812. PubMed ID: 31763628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of yeast central metabolism by enzyme phosphorylation.
    Oliveira AP; Ludwig C; Picotti P; Kogadeeva M; Aebersold R; Sauer U
    Mol Syst Biol; 2012; 8():623. PubMed ID: 23149688
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments.
    Casado P; Cutillas PR
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.003079. PubMed ID: 20972267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomics and phosphoproteomics analysis of tissues for the reoccurrence prediction of colorectal cancer.
    Ji L; Wang Z; Ji Y; Wang H; Guo M; Zhang L; Wang P; Xiao H
    Expert Rev Proteomics; 2022; 19(4-6):263-277. PubMed ID: 36308708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
    Macek B; Gnad F; Soufi B; Kumar C; Olsen JV; Mijakovic I; Mann M
    Mol Cell Proteomics; 2008 Feb; 7(2):299-307. PubMed ID: 17938405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.