These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 25735887)
1. Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. Hu J; Ma J; Zhu Q; Zhang Z; Wu C; Han B Angew Chem Int Ed Engl; 2015 Apr; 54(18):5399-403. PubMed ID: 25735887 [TBL] [Abstract][Full Text] [Related]
2. Efficient Ionic-Liquid-Promoted Chemical Fixation of CO Qiu J; Zhao Y; Li Z; Wang H; Fan M; Wang J ChemSusChem; 2017 Mar; 10(6):1120-1127. PubMed ID: 27791343 [TBL] [Abstract][Full Text] [Related]
3. An Experimental and Theoretical Study on the Unexpected Catalytic Activity of Triethanolamine for the Carboxylative Cyclization of Propargylic Amines with CO Zhao Y; Qiu J; Li Z; Wang H; Fan M; Wang J ChemSusChem; 2017 May; 10(9):2001-2007. PubMed ID: 28266144 [TBL] [Abstract][Full Text] [Related]
4. A protic ionic liquid catalyzes CO₂ conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones. Zhao Y; Yu B; Yang Z; Zhang H; Hao L; Gao X; Liu Z Angew Chem Int Ed Engl; 2014 Jun; 53(23):5922-5. PubMed ID: 24788820 [TBL] [Abstract][Full Text] [Related]
5. Non-Noble-Metal Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with Atmospheric Carbon Dioxide under Ambient Conditions. Gu AL; Wang WT; Cheng XY; Hu TD; Wu ZL Inorg Chem; 2021 Sep; 60(17):13425-13433. PubMed ID: 34369141 [TBL] [Abstract][Full Text] [Related]
6. Conversion of atmospheric CO Wu J; Niu J; Liu H; Xie R; Zhu N Org Biomol Chem; 2024 Oct; 22(40):8138-8143. PubMed ID: 39149914 [TBL] [Abstract][Full Text] [Related]
7. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. Wan YL; Zhang J; Wang L; Lei YZ; Wen LL J Colloid Interface Sci; 2024 Jan; 653(Pt A):844-856. PubMed ID: 37769363 [TBL] [Abstract][Full Text] [Related]
8. Novel and highly efficient transformation of carbon dioxide into 2-oxazolidinones over Al-MCM-41 mesoporous-supported ionic liquids. Hu YL; Liu XB; Yang LL Environ Technol; 2024 Apr; 45(9):1855-1869. PubMed ID: 36476067 [TBL] [Abstract][Full Text] [Related]
9. CO Gao F; Wang Z; Ji P; Cheng JP Front Chem; 2018; 6():658. PubMed ID: 30705879 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of oxazolidinones by efficient fixation of atmospheric CO2 with propargylic amines by using a silver/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) Dual-catalyst system. Yoshida M; Mizuguchi T; Shishido K Chemistry; 2012 Dec; 18(49):15578-81. PubMed ID: 23135989 [TBL] [Abstract][Full Text] [Related]
11. Ionic liquid as an efficient promoting medium for fixation of carbon dioxide: a clean method for the synthesis of 5-methylene-1,3-oxazolidin-2-ones from propargylic alcohols, amines, and carbon dioxide catalyzed by Cu(I) under mild conditions. Gu Y; Zhang Q; Duan Z; Zhang J; Zhang S; Deng Y J Org Chem; 2005 Sep; 70(18):7376-80. PubMed ID: 16122262 [TBL] [Abstract][Full Text] [Related]
12. Azole-Anion-Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO Zhao Y; Wu Y; Yuan G; Hao L; Gao X; Yang Z; Yu B; Zhang H; Liu Z Chem Asian J; 2016 Oct; 11(19):2735-2740. PubMed ID: 27214063 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of low temperature capture and regeneration of CO2 using diamino protic ionic liquids. Simons TJ; Verheyen T; Izgorodina EI; Vijayaraghavan R; Young S; Pearson AK; Pas SJ; MacFarlane DR Phys Chem Chem Phys; 2016 Jan; 18(2):1140-9. PubMed ID: 26660453 [TBL] [Abstract][Full Text] [Related]
14. In Situ Generated Zinc(II) Catalyst for Incorporation of CO Liu X; Wang MY; Wang SY; Wang Q; He LN ChemSusChem; 2017 Mar; 10(6):1210-1216. PubMed ID: 27860345 [TBL] [Abstract][Full Text] [Related]
15. Novel MCM-41 Supported Dicationic Imidazolium Ionic Liquids Catalyzed Greener and Efficient Regioselective Synthesis of 2-Oxazolidinones from Aziridines and Carbon Dioxide. Hu Y; Yang L; Liu X Molecules; 2022 Dec; 28(1):. PubMed ID: 36615437 [TBL] [Abstract][Full Text] [Related]
16. Structural features of selected protic ionic liquids based on a super-strong base. Triolo A; Lo Celso F; Ottaviani C; Ji P; Appetecchi GB; Leonelli F; Keeble DS; Russina O Phys Chem Chem Phys; 2019 Dec; 21(45):25369-25378. PubMed ID: 31709430 [TBL] [Abstract][Full Text] [Related]
17. Understanding the Role of Protic Ionic Liquids (PILs) in Reactive Systems: Rational Selection of PILs for the Design of Green Synthesis Strategies for Allylic Amines and β-Amino Esters. Bravo MV; Fernández JL; Adam CG; Della Rosa CD Chempluschem; 2019 Jul; 84(7):919-926. PubMed ID: 31943991 [TBL] [Abstract][Full Text] [Related]
19. Protic Ionic Liquids for the Belousov-Zhabotinsky Reaction: Aspects of the BZ Reaction in Protic Ionic Liquids and Its Use for the Autonomous Coil-Globule Oscillation of a Linear Polymer. Ueki T; Matsukawa K; Masuda T; Yoshida R J Phys Chem B; 2017 May; 121(17):4592-4599. PubMed ID: 28409642 [TBL] [Abstract][Full Text] [Related]
20. Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. Zhao Y; Han B; Liu Z Acc Chem Res; 2021 Jul; ():. PubMed ID: 34327980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]