BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25736394)

  • 1. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg(2+) ion models commonly used in biomolecular simulations.
    Panteva MT; Giambaşu GM; York DM
    J Comput Chem; 2015 May; 36(13):970-82. PubMed ID: 25736394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties.
    Grotz KK; Cruz-León S; Schwierz N
    J Chem Theory Comput; 2021 Apr; 17(4):2530-2540. PubMed ID: 33720710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended magnesium and calcium force field parameters for accurate ion-nucleic acid interactions in biomolecular simulations.
    Cruz-León S; Grotz KK; Schwierz N
    J Chem Phys; 2021 May; 154(17):171102. PubMed ID: 34241062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions.
    Li P; Merz KM
    J Chem Theory Comput; 2014 Jan; 10(1):289-297. PubMed ID: 24659926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force fields for divalent cations based on single-ion and ion-pair properties.
    Mamatkulov S; Fyta M; Netz RR
    J Chem Phys; 2013 Jan; 138(2):024505. PubMed ID: 23320702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids.
    Panteva MT; Giambaşu GM; York DM
    J Phys Chem B; 2015 Dec; 119(50):15460-70. PubMed ID: 26583536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Performance of the Nonbonded Mg
    Zuo Z; Liu J
    J Chem Inf Model; 2019 Jan; 59(1):399-408. PubMed ID: 30521334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties.
    Mamatkulov S; Schwierz N
    J Chem Phys; 2018 Feb; 148(7):074504. PubMed ID: 29471634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Li Z; Song LF; Li P; Merz KM
    J Chem Theory Comput; 2020 Jul; 16(7):4429-4442. PubMed ID: 32510956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties in SPC/E, TIP3P-fb, TIP4P/2005, TIP4P-Ew, and TIP4P-D.
    Grotz KK; Schwierz N
    J Chem Theory Comput; 2022 Jan; 18(1):526-537. PubMed ID: 34881568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References.
    Peng J; Zhang Y; Jiang Y; Zhang H
    J Chem Inf Model; 2021 Jun; 61(6):2981-2997. PubMed ID: 34080414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations.
    Allnér O; Nilsson L; Villa A
    J Chem Theory Comput; 2012 Apr; 8(4):1493-502. PubMed ID: 26596759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.
    Kurnikov IV; Kurnikova M
    J Phys Chem B; 2015 Aug; 119(32):10275-86. PubMed ID: 26109375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of charged amino-acid side chains with ions: an optimization strategy for classical force fields.
    Kahlen J; Salimi L; Sulpizi M; Peter C; Donadio D
    J Phys Chem B; 2014 Apr; 118(14):3960-72. PubMed ID: 24649981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential.
    Zhang Y; Jiang Y; Peng J; Zhang H
    J Chem Inf Model; 2021 Aug; 61(8):4031-4044. PubMed ID: 34313132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.