BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25736821)

  • 1. Repetitive genomic insertion of gene-sized dsDNAs by targeting the promoter region of a counter-selectable marker.
    Jeong J; Seo HN; Jung YK; Lee J; Ryu G; Lee W; Kwon E; Ryoo K; Kim J; Cho HY; Cho KM; Park JH; Bang D
    Sci Rep; 2015 Mar; 5():8712. PubMed ID: 25736821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli.
    DeVito JA
    Nucleic Acids Res; 2008 Jan; 36(1):e4. PubMed ID: 18084036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational optimization of tolC as a powerful dual selectable marker for genome engineering.
    Gregg CJ; Lajoie MJ; Napolitano MG; Mosberg JA; Goodman DB; Aach J; Isaacs FJ; Church GM
    Nucleic Acids Res; 2014 Apr; 42(7):4779-90. PubMed ID: 24452804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.
    Li Y; Gu Q; Lin Z; Wang Z; Chen T; Zhao X
    ACS Synth Biol; 2013 Nov; 2(11):651-61. PubMed ID: 24041030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.
    Chiang CJ; Chen PT; Chao YP
    Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli.
    Hwang HJ; Park JH; Kim JH; Kong MK; Kim JW; Park JW; Cho KM; Lee PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1374-84. PubMed ID: 24449476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.
    Tai YS; Xiong M; Jambunathan P; Wang J; Wang J; Stapleton C; Zhang K
    Nat Chem Biol; 2016 Apr; 12(4):247-53. PubMed ID: 26854668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts.
    Shin HD; Yoon SH; Wu J; Rutter C; Kim SW; Chen RR
    Bioresour Technol; 2012 Aug; 118():367-73. PubMed ID: 22705958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning.
    Braatsch S; Helmark S; Kranz H; Koebmann B; Jensen PR
    Biotechniques; 2008 Sep; 45(3):335-7. PubMed ID: 18778259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple and efficient genome recombineering using kil counter-selection in Escherichia coli.
    Chen W; Li Y; Wu G; Zhao L; Lu L; Wang P; Zhou J; Cao C; Li S
    J Biotechnol; 2019 Mar; 294():58-66. PubMed ID: 30768999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris.
    Yang J; Jiang W; Yang S
    FEMS Yeast Res; 2009 Jun; 9(4):600-9. PubMed ID: 19416369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased 2,3-butanediol production by changing codon usages in Escherichia coli.
    Park SY; Kim B; Lee S; Oh M; Won JI; Lee J
    Biotechnol Appl Biochem; 2014; 61(5):535-40. PubMed ID: 24527755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter.
    Cao Y; Xian M
    Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions.
    Bui le M; Lee JY; Geraldi A; Rahman Z; Lee JH; Kim SC
    J Biotechnol; 2015 Jun; 204():33-44. PubMed ID: 25858152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning chromosomal gene expression in Escherichia coli by combining single-stranded oligonucleotides mediated recombination and kil counter selection system.
    Chen W; Chen R; Wang H; Li Y; Zhang Y; Li S
    J Biotechnol; 2020 Jan; 307():63-68. PubMed ID: 31678458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of poly-3-hydroxybutyrate by Escherichia coli over-expressing multiple copies of NAD kinase integrated in the host genome.
    Zhang J; Gao X; Hong PH; Li ZJ; Tan TW
    Biotechnol Lett; 2015 Jun; 37(6):1273-8. PubMed ID: 25724717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convenient method for multiple insertions of desired genes into target loci on the Escherichia coli chromosome.
    Koma D; Yamanaka H; Moriyoshi K; Ohmoto T; Sakai K
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):815-29. PubMed ID: 22127754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes.
    Bloor AE; Cranenburgh RM
    Appl Environ Microbiol; 2006 Apr; 72(4):2520-5. PubMed ID: 16597952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.